

	
3GPP TSG-SA5 Meeting #150	S5-235988
21 - 25 August 2023, Goteborg, Sweden									 Revision of S5-235139
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	28.105
	CR
	-
	rev
	
	Current version:
	18.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Enhancements for AI-ML management

	
	

	Source to WG:
	Intel, NEC, Nokia, Nokia Shanghai Bell, HUAWEI, CATT, Ericsson, Deutsche Telekom, TELUS

	Source to TSG:
	S5

	
	

	Work item code:
	AIML_MGMT
	
	Date:
	2023-08-28

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	[bookmark: _Hlk129008606]This DraftCR incorporates the following agreed contributions under AIML_MGMT work item:

1. Input to draft CRs approved in SA5#149:
S5‑234827
S5‑234597
S5‑234828
S5‑234649
S5‑234653
S5‑234822
S5‑234829
S5‑234658
S5‑234820
S5‑234821
S5‑234833
S5‑234807
S5‑234819
S5‑234659
S5‑234350

1. Input to draft CRs approved in SA5#150:
[bookmark: S5-235827][bookmark: S5-235828]S5‑235827
S5‑235828
[bookmark: S5-236075][bookmark: S5-235837]S5‑236075
S5‑235837
[bookmark: S5-235838]S5‑235838
[bookmark: S5-235839]S5‑235839
[bookmark: S5-235840]S5‑235840
[bookmark: S5-235999]S5‑235999

The detailed reasons for change can be found in the relevant contributions listed above.

	
	

	Summary of change:
	· Add terms related to ML training
· Correction to the Scope
· Add AI/ML workflow
· Add AI/ML management capabilities
· Add UC, requirements and NRMs for ML entity joint training
· Add UC, requirements, and NRMs for ML validation
· Enhance the ML training to include re-training
· Add use case and requirements for managing the capabilities of ML Entities
· Add use case and requirements for AI/ML inference performance evaluation
· Add use case and requirements for AI/ML inference performance measurements selection
· Add use case, requirements and NRMs for ML training and testing performance management
· Add use case, requirements and NRMs for update of ML Entities
· Add use case, requirements, and NRMs for ML Testing
· Add use case, requirements and NRMs for joint testing of multiple ML entities

	
	

	Consequences if not approved:
	The enhancements of AI/ML management mentioned in the “summary of change” cannot be supported.

	
	

	Clauses affected:
	1, 2, 3.1, 5, 6, 7, Annex A.

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	1. S5-234847 Initial version of the DraftCR
2. S5-235139 Revision based on the updated baseline
3. S5-235988 Update based on the outcome of SA5#150

Page 1

	

	[bookmark: _Toc106015853][bookmark: _Toc106098491][bookmark: _Toc134614630][bookmark: _Toc134626377][bookmark: _Toc134632599][bookmark: _Toc134633524][bookmark: _Toc134633964]First modified section

[bookmark: _Toc106015843][bookmark: _Toc106098481][bookmark: _Toc130201954][bookmark: _Toc106015846][bookmark: _Toc106098484][bookmark: _Toc130201957]1	Scope
The present document specifies the Artificial Intelligence / Machine Learning (AI/ML) management capabilities and services for 5GS where AI/ML is used, including management and orchestration (e.g., MDA, see 3GPP TS 28.104 [2]) and 5G networks (e.g., NWDAF, see 3GPP TS 23.288 [3]) and NG-RAN (e.g., RAN intelligence defined in TS 38.300 [16] and TS 38.401 [17]).
The present document also describes the functionality and service framework for AI/ML management.
	Next modification

[bookmark: _Toc106015844][bookmark: _Toc106098482][bookmark: _Toc130201955]2	References
[bookmark: definitions]The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 28.104: "Management and orchestration; Management Data Analytics".
[3]	3GPP TS 23.288: "Architecture enhancements for 5G System (5GS) to support network data analytics services".
[4]	3GPP TS 28.552: "Management and orchestration; 5G performance measurements".
[5]	3GPP TS 32.425: "Telecommunication management; Performance Management (PM); Performance measurements Evolved Universal Terrestrial Radio Access Network (E-UTRAN)".
[6]	3GPP TS 28.554: "Management and orchestration; 5G end to end Key Performance Indicators (KPI)".
[7]	3GPP TS 32.422: "Telecommunication management; Subscriber and equipment trace; Trace control and configuration management".
[8]	3GPP TS 32.423: "Telecommunication management; Subscriber and equipment trace; Trace data definition and management".
[9]	3GPP TS 28.405: "Telecommunication management; Quality of Experience (QoE) measurement collection; Control and configuration".
[10]	3GPP TS 28.406: "Telecommunication management; Quality of Experience (QoE) measurement collection; Information definition and transport".
[11]	3GPP TS 28.532: "Management and orchestration; Generic management services".
[12]	3GPP TS 28.622: "Telecommunication management; Generic Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS)".
[13]	3GPP TS 32.156: "Telecommunication management; Fixed Mobile Convergence (FMC) Model repertoire".
[14]	3GPP TS 32.160: "Management and orchestration; Management service template".
[15]	3GPP TS 28.533: "Management and orchestration; Architecture framework".
[16]	3GPP TS 38.300: "NR; NR and NG-RAN Overall description; Stage-2".
[17]	3GPP TS 38.401: "NG-RAN; Architecture description".
	Next modification

3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
ML entity: an entity that is either an ML model or contains an ML model and ML model related metadata, it can be managed as a single composite entity.
NOTE 1: Metadata may include e.g. the applicable runtime context for the ML model.
AI decision entity: an entity that applies a non-ML based logic for making decisions that can be managed as a single composite entity.
ML model: mathematical algorithm that can be "trained" by data and human expert input as examples to replicate a decision an expert would make when provided that same information.
ML model training: capabilities process of performed by an ML training function to take training data, run it through an ML model, derive the associated loss and adjust the parameterization of that ML model based on the computed loss.
ML initial training: the ML entity training that generates the initial version of a trained ML entity.
ML re-training: the ML training that generates a new version of a trained ML entity using the same type, but different values or distributions, of training data as that used to train the previous version of the ML entity. This new version of the trained ML entity (i.e., the re-trained ML entity) supports the same type of inference as the previous version of the ML entity, i.e., the data type of inference input and data type of inference output remain unchanged between the two versions of the ML entity.
ML training: capabilities and associated end-to-end processes to enable an ML training function to perform ML model entity training (as defined above).
NOTE 2: 	ML training capabilities may include interaction with other parties to collect and format the data required for ML model training.
NOTE 3: 	Training an ML entity refers to training the ML model(s) associated with the ML entity internally by the ML training function.
ML training function: a logical function with ML training capabilities; it is also referred to as MLT function.
[bookmark: _Hlk109991689]AI/ML inference function: a logical function that employs an ML model entity and/or AI decision entity to conduct inference.
	Next modification

[bookmark: _Toc106015851][bookmark: _Toc106098489][bookmark: _Toc130201962][bookmark: _Toc106015850][bookmark: _Toc106098488][bookmark: _Toc130201961]5	AI/ML management functionality and service framework
5.0	AI/ML operational workflow
AI/ML techniques are widely used in 5GS (including 5GC, NG-RAN, and management system), the generic AI/ML operational workflow in the lifecycle of an ML entity, is depicted in Figure 5.0-1.

Figure 5.0-1: AI/ML operational workflow
The workflow involves 4 main phases; training, emulation, deployment, and inference phase. The main tasks for each phase are briefly described below:
Training phase:
-	ML training: training, including initial training and re-training, of an ML entity or a group of ML entities. It also includes validation of the trained ML entity to evaluate the performance variance when the ML entity performs on the training data and validation data. If the validation result does not meet the expectation (e.g., the variance is not acceptable), the ML entity needs to be re-trained. The ML training is the initial phase of the workflow.
-	ML testing: testing of the validated ML entity to evaluate the performance of the trained ML entity when it performs on testing data. If the testing result meets the expectation, the ML entity may proceed to the next phase, otherwise the ML entity may need to be re-trained.
Emulation phase:
-	ML emulation: running an ML entity or AI/ML inference function for inference in an emulation environment. The purpose is to evaluate the inference performance of the ML entity or AI/ML inference function in the emulation environment prior to applying it to the target network or system.
NOTE: 	The emulation phase is considered optional and can be skipped in the AI/ML operational workflow.
Deployment phase:
-	ML entity loading: loading of a trained ML entity to the target AI/ML inference function which will use it for inference.
[bookmark: _Hlk118279682]NOTE: 	The deployment phase may not be needed in some cases, for example when the training function and inference function are co-located.
Inference phase:
-	AI/ML inference: performing inference using the ML entity by the AI/ML inference function.
[bookmark: _Toc106015852][bookmark: _Toc106098490][bookmark: _Toc130201963]5.1	Functionality and service framework for ML training
An ML training Function playing the role of ML training MnS producer, may consume various data for ML training purpose.
As illustrated in Figure 5.1-1 the ML training capability is provided via ML training MnS in the context of SBMA to the authorized consumer(s) by ML training MnS producer.

Figure 5.1-1: Functional overview and service framework for ML training
The internal business logic of ML training leverages the current and historical relevant data, including those listed below to monitor the networks and/or services where relevant to the ML model, prepare the data, trigger and conduct the training:
-	Performance Measurements (PM) as per 3GPP TS 28.552 [4], 3GPP TS 32.425 [5] and Key Performance Indicators (KPIs) as per 3GPP TS 28.554 [6].
-	Trace/MDT/RLF/RCEF data, as per 3GPP TS 32.422 [7] and 3GPP TS 32.423 [8].
-	QoE and service experience data as per 3GPP TS 28.405 [9] and 3GPP TS 28.406 [10].
-	Analytics data offered by NWDAF as per 3GPP TS 23.288 [3].
-	Alarm information and notifications as per 3GPP TS 28.532 [11].
-	CM information and notifications.
-	MDA reports from MDA MnS producers as per 3GPP TS 28.104 [2].
-	Management data from non-3GPP systems.
-	Other data that can be used for training.

	Next modification

6	AI/ML management use cases and requirements
[bookmark: _Toc106015854][bookmark: _Toc106098492][bookmark: _Toc134614631][bookmark: _Toc134626378][bookmark: _Toc134632600][bookmark: _Toc134633525][bookmark: _Toc134633965]6.1	General
Each operational step in the workflow (see clause 5.0) is supported by one or more AI/ML management capabilities as depicted below for each of the operational phases.
Management capabilities for ML training
· ML training management: allowing the MnS consumer to request the ML entity training, consume and control the producer-initiated training, and manage the ML entity training/retraining process. The training management capability may include training performance management and setting a policy for the producer-initiated ML entity training.
· ML validation: ML training capability also includes validation to evaluate the performance of the ML entity when performing on the validation data, and to identify the variance of the performance on the training and validation data. If the variance is not acceptable, the ML entity would need to be tuned (re-trained) before being made available for the next step in the operational workflow (e.g., ML entity testing).
· ML testing management: allowing the MnS consumer to request the ML entity testing, and to receive the testing results for a trained ML entity. It may also include capabilities for selecting the specific performance metrics to be used or reported by the ML testing function. MnS consumer may also be allowed to trigger ML entity re-training based on the ML entity testing performance requirements.
Management capabilities for ML emulation phase:
[bookmark: _Hlk143697015]Editor’s note: description of Management capabilities for ML emulation phase is to be added later.

[bookmark: _Hlk143783189]Management capabilities for ML entity deployment phase:
Editor’s note: description of Management capabilities for ML entity deployment phase is to be added later.
[bookmark: _Hlk143783118]
Management capabilities for AI/ML inference phase:
· AI/ML inference management
[bookmark: _Hlk143700240]Editor’s note: description of Management capabilities for AI/ML inference phase is to be added later.
[bookmark: _Toc106015855][bookmark: _Toc106098493][bookmark: _Toc134614632][bookmark: _Toc134626379][bookmark: _Toc134632601][bookmark: _Toc134633526][bookmark: _Toc134633966]The use cases and corresponding requirements for AI/ML management capabilities are specified in the following clauses for each phase of the operational workflow.
[bookmark: _Hlk134626122]6.2	ML training phase
[bookmark: _Toc106015856][bookmark: _Toc106098494]6.2.1	DescriptionML training
6.2.1.1		Description
[bookmark: startOfAnnexes][bookmark: _Toc134626382][bookmark: _Toc134632604][bookmark: _Toc134633529][bookmark: _Toc134633969][bookmark: _Hlk134624149]In operational environment before the ML entity is deployed to conduct inference, the ML model associated with the ML entity needs to be trained (e.g. by ML training function which may be a separate or an external entity to the AI/ML inference function). The ML training can be initial training of an ML entity or re-training of an already trained ML entity.
NOTE: In the present document, ML entity training refers to ML model training associated with an ML entity.
The ML eEntity is trained by the ML training (MLT) MnS producer, and the training can be triggered by request(s) from one or more MLT MnS consumer(s), or initiated by the MLT MnS producer (e.g., as a result of model performance evaluation).
6.2.1.2	Use cases
[bookmark: _Toc106015858][bookmark: _Toc106098496][bookmark: _Toc134614635][bookmark: _Toc134626383][bookmark: _Toc134632605][bookmark: _Toc134633530][bookmark: _Toc134633970]6.2.1.2.1	ML training requested by consumer
The ML training capabilities are provided by an MLT MnS producer to one or more consumer(s).
[image: A black background with green lines

Description automatically generated]
Figure 6.2.1.2.1-1: ML training requested by MLT MnS consumer
The ML training may be triggered by the request(s) from one or more MLT MnS consumer(s). The consumer may be for example a network function, a management function, an operator, or another functional differentiation.
To trigger an initial ML entity training, the MLT MnS consumer requests the MLT MnS producer to train the ML model. In the ML training request, the MnS consumer should needs to specify in the ML training request the inference type which indicates the function or purpose of the ML entity, e.g. CoverageProblemAnalysis. The MLT MnS producer can perform the initial training according to the designated inference type. To trigger an ML entity re-training, the MnS consumer needs to specify in the ML training request the identifier of the ML entity to be re-trained.
The consumer may provide the data source(s) that contain(s) the training data which are considered as inputs candidates for training. To obtain the valid training outcomes, consumers may also designate their requirements for model performance (e.g. accuracy, etc) in the training request.
The performance of the ML entity depends on the degree of commonality between the distribution of the data used for training and the distribution of the data used for inference. As time progresses, the distribution of the input data used for inference might change as compared to the distribution of the data used for training. In such a scenario, the performance of the ML entity degrades over time. The MLT MnS producer may re-train the ML entity if the inference performance of the ML entity falls below a certain threshold, which needs to be configurable by the MnS consumer.
Following the ML training request by the MLT MnS consumer, Tthe MLT MnS producer provides a response to the consumer indicating whether the request was accepted.
If the request is accepted, the MLT MnS producer decides when to start the ML training with consideration of the request(s) from the consumer(s). Once the training is decided, the producer performs the followings:
-	selects the training data, with consideration of the consumer provided candidate training data. Since the training data directly influences the algorithm and performance of the trained ML Entity, the MLT MnS producer may examine the consumer's provided training data and decide to select none, some or all of them. In addition, the MLT MnS producer may select some other training data that are available;
-	trains the ML entity using the selected training data;
-	provides the training results (including the locationidentifier of the initially trained ML model or entity or the version number of the re-trained ML entity, training performance results, etc.) to the MLT MnS consumer(s).
[bookmark: _Toc106015859][bookmark: _Toc106098497][bookmark: _Toc134614636][bookmark: _Toc134626384][bookmark: _Toc134632606][bookmark: _Toc134633531][bookmark: _Toc134633971]6.2.1.2.2	ML training initiated by producer
The ML training may be initiated by the MLT MnS producer, for instance as a result of performance evaluation of the ML model, based on feedback or new training data received from the consumer, or when new training data which are not from the consumer describing the new network status/events become available.
When the MLT MnS producer decides to start the ML training, the producer performs the followings:
-	selects the training data;
-	trains the ML entity using the selected training data;
-	provides the training results (including the location identifier of the initially trained ML entity or the version number of the re-trained ML entity, training performance, etc.) to the MLT MnS consumer(s) who have subscribed to receive the ML training results.
[bookmark: _Toc106015860][bookmark: _Toc106098498][bookmark: _Toc134614637][bookmark: _Toc134626385][bookmark: _Toc134632607][bookmark: _Toc134633532][bookmark: _Toc134633972]6.2.1.2.3	ML model and and ML entity selection
For a given machine learning-based use case, different entities that apply the respective ML model or AI/ML inference function may have different inference requirements and capabilities. For example, one consumer with specific responsibility and wish to have an AI/ML inference function supported by an ML model or entity trained for city central business district where mobile users move at speeds not exceeding 30 km/hr. On the other hand, another consumer, for the same use case may support a rural environment and as such wishes to have an ML model and AI/ML inference function fitting that type of environment. The different consumers need to know the available versions of ML entities, with the variants of trained ML models or entities and to select the appropriate one for their respective conditions.
Besides, there is no guarantee that the available ML models/entities have been trained according to the characteristics that the consumers expect. As such the consumers need to know the conditions for which the ML models or ML entities have been trained to then enable them to select the models that are best fit to their conditions and needs.
The models that have been trained may differ in terms of complexity and performance. For example, a generic comprehensive and complex model may have been trained in a cloud-like environment but such a model cannot be used in the gNB and instead, a less complex model, trained as a derivative of this generic model, could be a better candidate. Moreover, multiple less complex models could be trained with different levels of complexity and performance which would then allow different relevant models to be delivered to different network functions depending on operating conditions and performance requirements. The network functions need to know the alternative models available and interactively request and replace them when needed and depending on the observed inference‑related constraints and performance requirements.
[bookmark: _Toc106015861][bookmark: _Toc106098499][bookmark: _Toc134614638][bookmark: _Toc134626386][bookmark: _Toc134632608][bookmark: _Toc134633533][bookmark: _Toc134633973]6.2.1.2.4	Managing ML training processes
This machine learning capability relates to means for managing and controlling ML model/entity training processes.
To achieve the desired outcomes of any machine learning relevant use-case, the ML model applied for such analytics and decision making, needs to be trained with the appropriate data. The training may be undertaken in a managed function or in a management function.
In either case, the network (or the OAM system thereof) not only needs to have the required training capabilities but needs to also have the means to manage the training of the ML models/entities. The consumers need to be able to interact with the training process, e.g., to suspend or restart the process; and also need to manage and control the requests related to any such training process.
[bookmark: _Toc106015862][bookmark: _Toc106098500][bookmark: _Toc134614639][bookmark: _Toc134626387][bookmark: _Toc134632609][bookmark: _Toc134633534][bookmark: _Toc134633974]6.2.1.2.5	Handling errors in data and ML decisions
Traditionally, the ML models/entities (e.g., ML entity1 and ML entity2 in figure 6.2.1.2.5-1) are trained on good quality data, i.e. data that were collected correctly and reflected the real network status to represent the expected context in which the ML entity is meant to operate. Good quality data is void of errors, such as:
-	Imprecise measurements, with added noise (such as RSRP, SINR, or QoE estimations).
-	Missing values or entire records, e.g., because of communication link failures.
-	Records which are communicated with a significant delay (in case of online measurements).
Without errors, an ML entity can depend on a few precise inputs, and does not need to exploit the redundancy present in the training data. However, during inference, the ML entity is very likely to come across these inconsistencies. When this happens, the ML entity shows high error in the inference outputs, even if redundant and uncorrupted data are available from other sources.

Figure 6.2.1.2.5-1: The propagation of erroneous information
As such the system needs to account for errors and inconsistencies in the input data and the consumers should deal with decisions that are made based on such erroneous and inconsistent data. The system should:
1)	enable functions to undertake the training in a way that prepares the ML entities to deal with the errors in the training data, i.e., to identify the errors in the data during training;
2)	enable the MLT MnS consumers to be aware of the possibility of erroneous input data that are used by the ML entity.
6.2.1.2.6	ML entity joint training
Each ML entity supports a specific type of inference. An AI/ML inference function may use one or more ML entities to perform the inference(s). When multiple ML entities are employed, these ML entities may operate together in a coordinated way, such as in a sequence, or even a more complicated structure. In this case, any change in the performance of one ML entity may impact another, and consequently impact the overall performance of the whole AI/ML inference function.
There are different ways in which the group of ML entities may coordinate. An example is the case where the output of one ML entity can be used as input to another ML entity forming a sequence of interlinked ML entities. Another example is the case where multiple ML entities provide the output in parallel (either the same output type where outputs may be merged (e.g., using weights), or their outputs are needed in parallel as input to another ML entity. The group of ML entities needs to be employed in a coordinated way to support an AI/ML inference function.
Therefore, it is desirable that these coordinated ML entities can be trained or re-trained jointly, so that the group of these ML entities can complete a more complex task jointly with better performance.
The ML entity joint training may be initiated by the MLT MnS producer or the MLT MnS consumer, with the grouping of the ML entities shared by the MLT MnS producer with the MLT MnS consumer.
6.2.1.2.7	ML entity validation performance reporting
During the ML training process, the generated ML entity needs to be validated. The purpose of ML validation is to evaluate the performance of the trained ML entity when performing on the validation data, and to identify the variance of the performance on the training data and the validation data. The training data and validation data are of the same pattern as they normally split from the same data set with a certain ratio in terms of quantity of the data samples.
In the ML training, the ML entity is generated based on the learning from the training data, and validated using the validation data. The performance of the ML entity has tight dependency on the data (i.e., training data) from which the ML entity is generated. Therefore, an ML entity performing well on the training data may not necessarily perform well on other data e.g., while conducting inference. If the performance of ML entity is not good enough according to the result of ML validation, the ML entity will be tuned (re-trained) and validated again. The process of ML entity tuning and validation is repeated by the ML training function, until the performance of the ML entity meets the expectation on both training data and validation data. The MnS producer subsequently selects one or more ML entities with the best level of performance on both training data and validation data as the result of the ML training, and reports accordingly to the consumer. The performance of each selected ML entity on both training data and validation data also needs to be reported.
The performance result of the validation may also be impacted by the ratio of the training data and the validation data. MnS consumer needs to be aware of the ratio of training data and the validation data, coupled with the performance score on each data set, in order to be confident about the performance of ML entity.
[bookmark: _Toc106015863][bookmark: _Toc106098501][bookmark: _Toc134614640][bookmark: _Toc134626396][bookmark: _Toc134632610][bookmark: _Toc134633535][bookmark: _Toc134633975][bookmark: MCCQCTEMPBM_00000143]6.2.1.3	Requirements for ML training
Table 6.2.1.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_TRAIN-FUN-01
	The MLT MnS producer shall have a capability allowing an authorized the MLT MnS consumer to request ML training.
	ML training requested by consumer (clause 6.2.1.2.1)

	REQ- ML_TRAIN-FUN-02
	The MLT MnS producer shall have a capability allowing the authorized MLT MnS consumer to specify the data sources containing the candidate training data for ML training.
	ML training requested by consumer (clause 6.2.1.2.1)

	REQ- ML_TRAIN-FUN-03
	The MLT MnS producer shall have a capability allowing the authorized MLT MnS consumer to specify the inference type of the ML model entity to be trained.
	ML training requested by consumer (clause 6.2.1.2.1)

	REQ- ML_TRAIN-FUN-04
	The MLT MnS producer shall have a capability to provide the training result to the MLT MnS consumer.
	ML training requested by consumer (clause 6.2.1.2.1), /ML training initiated by producer (clause 6.2.1.2.2)

	REQ- ML_TRAIN-FUN-05
	The MLT MnS producer shall have a capability allowing an authorized MLT MnS consumer to configure the thresholds of the performance measurements and/or KPIs to trigger the re-training of an ML entity. (See Note)
	ML training initiated by producer (clause 6.2.1.2.2)

	REQ- ML_TRAIN-FUN-06
	The MLT MnS producer shall have a capability to provide the version number of the ML entity and the time when it is generated by ML re-training to the authorized MLT MnS consumer.
	ML training requested by consumer (clause 6.2.1.2.1), /ML training initiated by producer (clause 6.2.1.2.2)

	REQ- ML_TRAIN-FUN-07
	The MLT MnS producer shall have a capability allowing an authorized MLT MnS consumer to manage the training process, including starting, suspending, or resuming the training process, and configuring the ML context for ML training.
	ML training requested by consumer (clause 6.2.1.2.1), ML training initiated by producer (clause 6.2.1.2.2), ML entity joint training (clause 6.2.1.2.6)

	REQ- ML_TRAIN-FUN-08
	The MLT MnS producer should have a capability to provide the grouping of ML entities to an authorized MLT MnS consumer to enable coordinated inference.
	ML entity joint training (clause 6.2.1.2.6)

	REQ- ML_TRAIN-FUN-09
	The MLT MnS producer should have a capability to allow an authorized MLT MnS consumer to request joint training of a group of ML entities.
	ML entity joint training (clause 6.2.1.2.6)

	REQ- ML_TRAIN-FUN-10
	The MLT MnS producer should have a capability to jointly train a group of ML entities and provide the training results to an authorized consumer.
	ML entity joint training (clause 6.2.1.2.6)

	REQ-ML_SELECT-01
	3GPP management system shall have the a capability to enable an authorized MLT MnS consumer to discover the characteristics of available ML entitiesmodels including the contexts under which each of the ML entitiesmodels wereas trained.
	ML model and ML entity selection (clause 6.2.2.3)

	REQ-ML_SELECT-02
	3GPP management system shall have the a capability to enable an authorized MLT MnS consumer to select an ML modelentity.
	ML models and ML entity selection (clause 6.2.2.3)

	REQ-ML_SELECT-03
	The MLT MnS producer shall have the a capability to enable an authorized MLT MnS consumer to request for a model to be trained to satisfy the consumer's expectations.
	ML training requested by consumer (clause 6.2.2.1), ML model and ML entity selection (clause 6.2.2.3)

	REQ-ML_SELECT-04
	3GPP management system shall have the a capability to enable an authorized MLT MnS consumer to request for information and be informed about the available alternative models of differing complexity and performance.
	ML model and ML entity selection (clause 6.2.2.3)

	REQ-ML_SELECT-05
	3GPP management system shall have the a capability to enable an authorized MLT MnS consumer to request one of the known or available alternative models of differing complexity and performance to be used for inference.
	ML model and ML entity selection (clause 6.2.2.3)

	REQ-ML_SELECT-06
	The 3GPP management system shall have a capability to provide a selected ML model/entity to the authorized MLT MnS consumer.
	ML model and ML entity selection (clause 6.2.2.3)

	REQ-ML_TRAIN- MGT-01
	The MLT MnS producer shall have a capability allowing an authorized consumer to manage and configure one or more requests for the training of specific ML models or ML entities, e.g. to modify the characteristics of the request or to delete a request.
	ML training requested by consumer (clause 6.2.2.1),Managing ML Training Processes (clause 6.2.2.4)

	REQ-ML_TRAIN- MGT-02
	The MLT MnS producer shall have a capability allowing an authorized MLT MnS consumer to manage and configure one or more training processes, e.g. to start, suspend or restart the training; or to adjust the training conditions and/or characteristics.
	ML training requested by consumer (clause 6.2.2.1),
Managing ML training processes (clause 6.2.2.4)

	REQ-ML_TRAIN- MGT-03
	3GPP management system shall have the a capability to enable an authorized MLT MnS consumer (e.g. the function/entity different from the function that generated a request for ML model/entity training) to request for a report on the outcomes of a specific training instance.
	Managing ML training processes (clause 6.2.2.4)

	REQ-ML_TRAIN- MGT-04
	3GPP management system shall have the a capability to enable an authorized MLT MnS consumer to define the reporting characteristics related to a specific training request or training instance.
	Managing ML training processes (clause 6.2.2.4)

	REQ-ML_TRAIN- MGT-05
	3GPP management system shall have the a capability to enable the MLT function to report to any authorized MLT MnS consumer about specific ML Training process and/or report about the outcomes of any such ML training process.
	Managing ML training processes (clause 6.2.2.4)

	REQ-ML_ERROR-01
	The 3GPP management system shall enable an authorized consumer of data services (e.g. an MLT function) to request from a producer of data services a Value Quality Score of the data, which is the numerical value that represents the dependability/quality of a given observation and measurement type.
	Handling errors in data and ML decisions (clause 6.2.2.5)

	REQ-ML_ERROR-02
	The 3GPP management system shall enable an authorized consumer of AI/ML decisions (e.g. a controller) to request ML decision confidence score which is the numerical value that represents the dependability/quality of a given decision generated by an AI/ML-inference function.
	Handling errors in data and ML decisions (clause 6.2.2.5)

	REQ-ML_ERROR-03
	The 3GPP management system shall enable a producer of data services (e.g. a gNB) to provide to an authorized consumer (e.g. an MLT function) a Value Quality Score of the data, which is the numerical value that represents the dependability/quality of a given observation and measurement type.
	Handling errors in data and ML decisions (clause 6.2.2.5)

	REQ-ML_ERROR-04
	The 3GPP management system shall enable a producer of ML decisions (e.g. an AI/ML inference function) to provide to an authorized consumer of AI/ML decisions (e.g. a controller) an AI/ML decision confidence score which is the numerical value that represents the dependability/quality of a given decision generated by the inference function.
	Handling errors in data and ML decisions (clause 6.2.2.5)

	REQ-ML_VLD-01
	The MLT MnS producer should have a capability to validate the ML entities during the ML training process and report the performance of the ML entities on both the training data and validation data to the authorized consumer.
	ML entity validation performance reporting (clause 6.2.1.2.7)

	REQ-ML_VLD-02
	The MLT MnS producer should have a capability to report the ratio (in terms of quantity of data samples) of the training data and validation data used during the ML training and validation process.
	ML entity validation performance reporting (clause 6.2.1.2.7)

	NOTE:	The performance measurements and KPIs are specific to each type (i.e., the inference type that the ML entity supports) of ML entity.

6.2.2	Performance management for ML training
6.2.2.1	Description
In the ML training phase (including training and validation), the performance of ML entity needs to be evaluated. The performance is the degree to which the ML entities fulfils the objectives for which it was trained and can be evaluated for training data as training performance or for testing data as testing performance. The related performance indicators need to be collected and analyzed.
[bookmark: _Toc127218993][bookmark: _Toc128685220][bookmark: _Toc129028478][bookmark: _Toc129030007][bookmark: _Toc129155875]6.2.2.2	Use cases
[bookmark: _Toc127218994][bookmark: _Toc128685221][bookmark: _Toc129028479][bookmark: _Toc129030008][bookmark: _Toc129155876]6.2.2.2.1	Performance indicator selection for ML training and testing
The ML training function may support training for single or different kinds of ML entities and may support the capability to evaluate each kind of ML entity by one or more performance indicators.
The MnS consumer may prefer to use some performance indicator(s) over others to evaluate one kind of ML entity. The performance indicators for training and testing mainly include the following aspects:
-	ML training resource performance indicators: the performance indicators of the system that trains the ML entity, e.g., "training duration" etc.
-	ML performance indicators: performance indicators of the ML entity itself, e.g., "accuracy", "precision", "F1 score", etc., which apply for both training and testing.
Therefore, the MnS producer for ML training and testing needs to provide the name(s) of supported performance indicator(s) for the MnS consumer to query and select for ML entity performance evaluation. The MnS consumer may also need to provide the performance requirements of the ML entity using the selected performance indicators.
The MnS producer for ML training and testing uses the selected performance indicators for evaluating ML training and testing, and reports with the corresponding performance score in the ML training report or ML testing report when the training or testing is completed.
[bookmark: _Toc127218998][bookmark: _Toc128685223][bookmark: _Toc129028481][bookmark: _Toc129030010][bookmark: _Toc129155878]6.2.2.2.2	ML entity performance indicators query and selection for ML training and testing
The ML entity performance evaluation and management is needed during training and testing phase. The related performance indicators need to be collected and analyzed. The MnS producer of ML training or testing should determine which indicators are needed, i.e., select some indicators based on the use case and use these indicators for performance evaluation.
The ML MnS consumer or testing may have different requests on AI/ML performance, depending on its use case and requirements, which may imply that different performance indicators may be relevant for performance evaluation. The MnS producer for ML training/testing can be queried to provide the information on supported performance indicators referring to ML entity training/testing phase. Such performance indicators in training phase may be for example accuracy/precision/recall/F1-score/MSE/MAE /confusion matrix, and in test phase may be data drift in data statistics. Based on supported performance indicators in different phase as well as based on consumer’s requirements, the MnS consumer for ML training or ML testing may request a sub-set of supported performance indicators to be monitored and used for performance evaluation. Management capabilities are needed to enable the MnS consumer for ML training or ML testing to query the supported performance indicators and select a sub-set of performance indicators in training phase to be used for performance evaluation.
[bookmark: _Toc127218999][bookmark: _Toc128685224][bookmark: _Toc129028482][bookmark: _Toc129030011][bookmark: _Toc129155879]6.2.2.2.3	MnS consumer policy-based selection of ML entity performance indicators for ML training and testing
ML entity performance evaluation and management is needed during ML training phase. The related performance indicators need to be collected and analysed. The MnS producer for ML training should determine which indicators are needed or may be reported, i.e., select some indicators based on the service and use these indicators for performance evaluation.
The MnS consumer for ML training or testing may have differentiated levels of interest in the different performance dimensions or metrics. Thus, depending on its use case, the AI/ML MnS consumer may indicate the preferred behaviour and performance requirement that needs to be considered during training or testing of/from the ML entity by the ML MnS producer for ML training or testing. These performance requirements need not indicate the technical performance indicators used for ML training, testing or inference, such as "accuracy" or "precision" or "recall" or "Mean Squared Error" etc. The ML MnS consumer for ML training or testing may not be capable enough to indicate the performance metrics to be used for training or testing.
6.2.2.3	Requirements for ML training and testing performance management
Table 6.2.2.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_TRAIN_PM-1
	The ML Training or Testing MnS producer of the 3GPP management system shall have a capability to allow an authorized consumer to get the capabilities about what kind of ML entities the ML training function or ML testing function is able to train or test.
	Performance indicator selection for ML training (clause 6.2.2.2.1)

	REQ-ML_TRAIN_PM-2
	The ML Training or Testing MnS producer of the 3GPP management system shall have a capability to allow an authorized consumer to query what performance indicators are supported by the ML training function or ML testing function for each kind of ML entity.
	Performance indicator selection for ML training (clause 6.2.2.2.1)

	REQ-ML_TRAIN_PM-3
	The ML Training or Testing MnS producer of the 3GPP management system shall have a capability to allow an authorized consumer to select the performance indicators from those supported by the ML training function or ML testing function for reporting the training or testing performance for each kind of ML entity.
	Performance indicator selection for ML training (clause 6.2.2.2.1)

	REQ-ML_TRAIN_PM-4
	The ML Training MnS producer of the 3GPP management system shall have a capability to allow an authorized consumer to provide the performance requirements for the ML entity training using the selected the performance indicators from those supported by the ML training function.
	Performance indicator selection for ML training (clause 6.2.2.2.1)

[bookmark: _Toc120096688][bookmark: _Toc120097047][bookmark: _Toc128685157][bookmark: _Toc129028410][bookmark: _Toc129029939][bookmark: _Toc129155807]6.2.3	ML testing
[bookmark: _Hlk96012523]6.2.3.1	Description
During ML entity training phase, after the training and validation, the ML entity needs to be tested to evaluate the performance of the ML entity when it conducts inference using the testing data. Testing may involve interaction with third parties (besides the developer of the ML training function), e.g., the operators may use the ML training function or third-party systems/functions that may rely on the inference results computed by the ML entity for testing.
If the testing performance is not acceptable or does not meet the pre-defined requirements, the consumer may request the ML training producer to re-train the ML entity with specific training data and/or performance requirements.
[bookmark: _Toc120096690][bookmark: _Toc120097049][bookmark: _Toc128685159][bookmark: _Toc129028412][bookmark: _Toc129029941][bookmark: _Toc129155809]6.2.3.2	Use cases
[bookmark: _Toc120096691][bookmark: _Toc120097050][bookmark: _Toc128685160][bookmark: _Toc129028413][bookmark: _Toc129029942][bookmark: _Toc129155810]6.2.3.2.1	Consumer-requested ML entity testing
After receiving an ML training report about a trained ML entity from the ML training MnS producer, the consumer may request the ML testing MnS producer to test the ML entity before applying it to the target inference function.
The ML testing is to conduct inference on the tested ML entity using the testing data as inference inputs and produce the inference output for each testing dataset example.
The ML testing MnS producer may be the same as or different from the ML training MnS producer.
After completing the ML testing, the ML testing MnS producer provides the testing report indicating the success or failure of the ML testing to the consumer. For a successful ML testing, the testing report contains the testing results, i.e., the inference output for each testing dataset example.
The ML testing MnS producer needs to have the capabilities to provide the services needed to enable the consumer to request testing and receive results on the testing of an ML entity.
[bookmark: _Toc133417766][bookmark: _Toc133482814][bookmark: _Toc133483906]6.2.3.2.2	Producer-initiated ML entity testing
The ML entity testing may also be initiated by the MnS producer, after the ML entity is trained and validated. A consumer (e.g., an operator) may still need to define the policies (e.g., allowed time window, maximum number of testing iterations, etc.) for the testing of a given ML entity. The consumer may pre-define performance requirements for the ML entity testing and allow the MnS producer to decide on whether re-training/validation need to be triggered. Re-training may be triggered by the testing MnS producer itself based on the performance requirements supplied by the MnS consumer.
[bookmark: _Toc129028415][bookmark: _Toc129029944][bookmark: _Toc129155812][bookmark: OLE_LINK41][bookmark: _Hlk136332923]6.2.3.2.3	Joint testing of multiple ML entities
[bookmark: OLE_LINK11]A group of ML entities may work in a coordinated manner for complex use cases. In such cases an ML entity is just one step of the inference processes of an AI/ML inference function, with the inference outputs of an ML entity as the inputs to the next ML entity.
The group of ML entities is generated by the ML training function. The group, including all contained ML entities, needs to be tested. After the ML testing of the group, the MnS producer provides the testing results to the consumer.
[bookmark: _Hlk128511836]NOTE:	This use case is about the ML entities testing during the training phase and is irrelevant to the testing cases that the ML entities have been deployed.
6.2.3.3	Requirements for ML testing
	Table 6.2.3.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_TEST-1
	The ML testing MnS producer shall have a capability to allow an authorized consumer to request the testing of a specific ML entity.
	Consumer-requested ML entity testing (clause 6.2.3.2.1)

	REQ-ML_TEST-2
	The ML testing MnS producer shall have a capability to trigger the testing of an ML entity and allow the MnS consumer to set the policy for the testing.
	Producer-initiated ML entity testing (6.2.3.2.2)

	REQ-ML_TEST-3
	The ML testing MnS producer shall have a capability to report the performance of the ML entity when it performs inference on the testing data.
	Consumer-requested ML entity testing (clause 6.2.3.2.1), and
producer-triggered ML entity testing (clause 6.2.3.2.2)

	REQ-ML_TEST-4
	The ML testing MnS producer shall have a capability allowing an authorized consumer to request the testing of a group of ML entities.
	Joint testing of multiple ML entities (clause 6.2.3.2.3)

[bookmark: _Toc134632611][bookmark: _Toc134633536][bookmark: _Toc134633976]6.2.2	Use case category #2
[bookmark: _Toc134632612][bookmark: _Toc134633537][bookmark: _Toc134633977]6.2.2.1	Description
[bookmark: _Toc134632613][bookmark: _Toc134633538][bookmark: _Toc134633978]6.2.2.2	Use cases
[bookmark: _Toc134632614][bookmark: _Toc134633539][bookmark: _Toc134633979]6.2.2.2.1	use case #1
[bookmark: _Toc134632615][bookmark: _Toc134633540][bookmark: _Toc134633980]6.2.2.2.2	use case #2
[bookmark: _Toc134632616][bookmark: _Toc134633544][bookmark: _Toc134633984]6.2.2.3	Requirements for category#2
[bookmark: _Hlk134633884][bookmark: _Hlk134633836]Table 6.2.2.3-1
	Requirement label
	Description
	Related use case(s)

	
	
	

	
	
	

	
	
	

[bookmark: _Toc134626397][bookmark: _Toc134632617][bookmark: _Toc134633545][bookmark: _Toc134633985]6.3	AI/ML emulation phase
[bookmark: _Toc134626398][bookmark: _Toc134632618][bookmark: _Toc134633546][bookmark: _Toc134633986]6.3.1	Use case category #1
[bookmark: _Toc134626399][bookmark: _Toc134632619][bookmark: _Toc134633547][bookmark: _Toc134633987]6.3.1.1	Description
[bookmark: _Toc134626400][bookmark: _Toc134632620][bookmark: _Toc134633548][bookmark: _Toc134633988]6.3.1.2	Use cases
[bookmark: _Toc134626401][bookmark: _Toc134632621][bookmark: _Toc134633549][bookmark: _Toc134633989]6.3.1.2.1	use case #1
[bookmark: _Toc134626402][bookmark: _Toc134632622][bookmark: _Toc134633550][bookmark: _Toc134633990]6.3.1.2.2	use case #2
[bookmark: _Toc134626406][bookmark: _Toc134632626][bookmark: _Toc134633554][bookmark: _Toc134633994]6.3.1.3	Requirements for category #1

Table 6.3.1.3-1
	Requirement label
	Description
	Related use case(s)

	
	
	

	
	
	

	
	
	

6.4	ML entity deployment phase
6.4.1	Use case category #1
6.4.1.1	Description
6.4.1.2	Use cases
6.4.1.2.1	use case #1
6.4.1.2.2	use case #2
6.4.1.3	Requirements for category #1
Table 6.4.1.3-1
	Requirement label
	Description
	Related use case(s)

	
	
	

	
	
	

	
	
	

[bookmark: _Toc134633995]6.5	AI/ML inference phase
[bookmark: _Toc134633996]6.5.1	AI/ML inference performance management
6.5.1.1	Description
In the AI/ML inference phase, the performance of the AI/ML inference function and ML entity need to be evaluated against the MnS consumer's provided performance expectations/targets, to identify and timely fix any problem. Actions to fix any problem would be e.g., to trigger the ML re-training, ML testing, or re-deployment.
[bookmark: _Toc128685282][bookmark: _Toc129028555][bookmark: _Toc129030085][bookmark: _Toc129155952]6.5.1.2	Use cases
[bookmark: _Toc128685283][bookmark: _Toc129028556][bookmark: _Toc129030086][bookmark: _Toc129155953]6.5.1.2.1	AI/ML inference performance evaluation
In the AI/ML inference phase, the AI/ML inference function (including e.g., MDAF, NWDAF or RAN intelligence functions) uses one or more ML entities for inference to generate the AI/ML inference output. The performance of a running ML entity may degrade over time due to changes in network state, which will affect the related network performance and service. Thus, it is necessary to evaluate performance of the ML entity during the AI/ML inference process. If the inference output is executed, the network performance related to each AI/ML inference function also needs to be evaluated.
The consumer (e.g., a Network or Management function) may take some actions according to the AI/ML inference output provided by the AI/ML inference function. If the actions are taken accordingly, the network performance is expected to be optimized. Each AI/ML inference function has its specific focus and will impact the network performance from different perspectives.
The consumer may choose to not take any actions for various reasons, e.g., lacking confidence in the inference output, avoiding potential conflict with other actions or when no actions are needed or recommended at all according to the inference output.
For evaluating the performance of the AI/ML inference function and ML entity, the MnS producer responsible for ML inference performance management needs to be able to get the inference output generated by each AI/ML inference function. Then, the MnS producer can evaluate the performance based on the inference output and related network measurements (i.e., the actual output).
Depending on the performance evaluation results, some actions (e.g., deactivate the running entity, start retraining, change the running entity with a new one, etc) can be taken to avoid generating the inaccurate inference output.
To monitor the performance in the AI/ML inference phase, the MnS producer responsible for AI/ML inference performance management can perform evaluation periodically. The performance evaluation period may be determined based on the network change speed. Besides, a consumer (e.g., an operator) may wish to control and manage the performance evaluation capability. For example, the operator may configure the performance evaluation period of a specified ML entity.
[bookmark: _Toc128685285][bookmark: _Toc129028558][bookmark: _Toc129030088][bookmark: _Toc129155955]6.5.1.2.2	AI/ML performance measurements selection based on MnS consumer policy
Evaluation and management of the performance of an ML entity is needed during inference phase. The related performance measurements need to be collected and analysed. The MnS producer for inference should determine which measurements are needed or may be reported, i.e., select some measurements based on the service and use these measurements for performance evaluation.
The MnS consumer for inference may have differentiated levels of interest in the different performance dimensions or metrics. Thus, depending on its use case, the MnS consumer may indicate the preferred behaviour and performance requirement that needs to be considered during inference from the ML entity by the AI/ML inference MnS Producer. The AI/ML inference MnS consumer may not be capable enough to indicate the performance metrics. Instead, the AI/ML MnS consumer may indicate the requirement using a policy or guidance that reflects the preferred performance characteristics of the ML entity. Based on the indicated policy/guidance, the AI/ML MnS producer may then deduce and apply the appropriate performance indicators for inference. Management capabilities are needed to enable the MnS consumer to indicate the behavioural and performance policy/guidance that may be translated by the MnS producer into one or more technical performance measurements during inference.
6.5.1.3	Requirements for AI/ML inference performance management
Table 6.5.1.3-1
	Requirement label
	Description
	Related use case(s)

	REQ- AI/ML_INF_PE-01
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to get the inference output provided by an AI/ML inference function (e.g., MDAF, NWDAF or RAN intelligence function).
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ- AI/ML_INF_PE-02
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to get the performance evaluation of an AI/ML inference output as measured by a defined set of performance metrics
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ- AI/ML_INF_PE-03
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to provide feedback about an AI/ML inference output expressing the degree to which the inference output meets the consumer's expectations.
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ- AI/ML_INF_PE-04
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to be informed about the executed actions that were triggered based on the inference output provided by an AI/ML inference function (e.g., MDAF, NWDAF or RAN intelligence function).
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ- AI/ML_INF_PE-05
	The MnS producer responsible for AI/ML inference management shall have a capability enabling an authorized consumer to obtain the performance data related to an ML entity or an AI/ML inference function (e.g., MDAF, NWDAF or RAN intelligence function).
	AI/ML inference performance evaluation (clause 6.5.1.2.1)

	REQ-AI/ML_PERF-SEL-1
	The MLT MnS producer shall have a capability allowing an authorized MnS consumer to discover supported AI/ML performance measurements related to AI/ML inference and select some of the desired measurements based on the MnS consumer’s requirements.
	AI/ML performance measurements selection based on MnS consumer policy (clause 6.5.1.2.2)

	REQ-AI/ML_PERF-POL-1
	The AI/ML MnS producer shall have a capability allowing the authorized MnS consumer to indicate a performance policy related to AI/ML inference phase.
	AI/ML performance measurements selection based on MnS consumer policy (clause 6.5.1.2.2)

6.5.2	AI/ML update control
[bookmark: _Toc120528538][bookmark: _Toc129028587][bookmark: _Toc129030117][bookmark: _Toc133417941][bookmark: _Toc133482989][bookmark: _Toc133484081]6.5.2.1	Description
In many cases, network conditions change makes the capabilities of the ML entity/entities decay, or at least become inappropriate for the changed conditions. In such cases, the MnS consumer should still be enabled to trigger updates, e.g., when the consumer realizes that the insight or decisions generated by the function are no longer appropriate for the observed network states, when the consumer observes the inference performance of ML entity/entities is decreasing.
The MnS consumer may request the AI/ML inference MnS producer to use an updated ML entity/entities for the inference with some specific performance requirements. This gives flexibility to the AI/ML inference MnS producer on how to address the requirements by for example getting ML entity/entities updated, which may be loading the already trained ML entity/entities or may lead to requesting to train/re-train the ML entity/entities by utilizing the ML training MnS.
[bookmark: _Toc120528539][bookmark: _Toc129028588][bookmark: _Toc129030118][bookmark: _Toc133417942][bookmark: _Toc133482990][bookmark: _Toc133484082]6.5.2.2	Use cases
[bookmark: _Toc129028589][bookmark: _Toc129030119][bookmark: _Toc133417943][bookmark: _Toc133482991][bookmark: _Toc133484083]6.5.2.2.1	Availability of new capabilities or ML entities
Depending on their configurations, AI/ML inference functions may learn new characteristics during their utilization, e.g., if they are configured to learn through reinforcement learning or if they are configured to download new versions of their constituent ML entities. In such cases, the authorized consumer of AI/ML may wish to be informed by the AI/ML Inference MnS producer (e.g., the operator, a management function, or a network function) about their new capabilities.
[bookmark: _Toc129028590][bookmark: _Toc129030120][bookmark: _Toc133417944][bookmark: _Toc133482992][bookmark: _Toc133484084]6.5.2.2.2	Triggering ML entity update
When the inference capabilities of AI/ML inference functions degenerate, the typical action may be to trigger re-training of the constituent ML entities. It is possible, however, that the AI/ML inference MnS producer only offers inference capabilities and is not equipped with capabilities to update, train/re-train its constituent ML entities. Nevertheless, the authorized MnS consumer may still need to request for improvements in the capabilities of the AI/ML inference function. In such cases, the authorized MnS consumer may still wish to request for an improvement and may specify in its request e.g., a new version of the ML entities, i.e., to have the ML entities updated or re-trained. The corresponding internal actions taken by the AI/ML MnS inference producer may not be necessarily known by the consumer.
The AI/ML inference MnS consumer needs to request the AI/ML inference MnS producer to update its capabilities or its constituent ML entities and the AI/ML MnS producer should respond accordingly. For example, the AI/ML inference MnS producer may download new software that supports the required updates, download from a remote server a file containing configurations and parameters to update one or more of its constituent ML entities, or it may trigger one or more remote or local AI/ML-related processes (including training/re-training, testing, etc.) needed to generate the required updates. Related notifications for update can be sent to the AI/ML inference MnS consumer to indicate the information of the update process, e.g., the update is finished successfully, the maximum time taken to complete the update is reached but the performance does not achieve the requirements, etc.
Besides, an AI/ML inference MnS consumer may wish to manage the update process(es), e.g., to define policies on how often the update may occur, suspend or restart the update or adjust the update conditions or characteristics, the requirements could include, e.g., the times when the update may be executed, the expected achievable performance for updating, the expected time taken to complete the update, etc.
6.5.2.3	Requirements for AIML update control
Table 6.5.2.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-AIML_UPDATE-1
	The AI/ML Inference MnS producer should have a capability to inform an authorized MnS consumer of the availability of AI/ML capabilities or ML entities or versions thereof (e.g., as learned through a training process or as provided via a software update) and the readiness to update the AI/ML capabilities of the respective network function when triggered
	Availability of new capabilities or ML entities (clause 6.5.2.2.1)

	REQ-AIML_UPDATE-2
	The AI/ML Inference MnS producer should have a capability to inform an authorized MnS consumer of the expected performance gain if/when the AI/ML capabilities or ML entities of the respective network function are updated with/to the specific set of newly available AI/ML capabilities
	Availability of new capabilities or ML entities (clause 6.5.2.2.1)

	REQ-AIML_UPDATE-3
	The AI/ML Inference MnS producer should have a capability to allow an authorized MnS consumer to request the AI/ML MnS producer to update its ML entities using a specific version of newly available AI/ML capabilities or ML entities or using AI/ML capabilities or ML entities with requirements (e.g., the minimum achievable performance after updating, the maximum time taken to complete the update, etc)..
	Triggering ML entity update (clause 6.5.2.2.2)

	REQ-AIML_UPDATE-4
	The AI/ML Inference MnS producer should have a capability for the AI/ML MnS producer to inform an authorized MnS consumer about of the process or outcomes related to any request for updating the AI/ML capabilities or ML entities
	Triggering ML entity update (clause 6.5.2.2.2)

	REQ-AIML_UPDATE-5
	The AI/ML Inference MnS producer should have a capability for the AI/ML MnS producer to inform an authorized MnS consumer about of the achieved performance gain following the update of the AI/ML capabilities of a network function with/to the specific newly available ML entities or set of AI/ML capabilities
	Triggering ML entity update (clause 6.5.2.2.2)

	REQ-AIML_UPDATE-6
	The AI/ML Inference MnS producer should have a capability for an authorized MnS consumer (e.g., an operator or the function/entity that generated the request for updating the AI/ML capabilities) to manage the request and subsequent process, e.g. to suspend, re-activate or cancel the request or process; or to adjust the characteristics of the capability update; or to define how often the update may occur, suspend, restart or cancel the request or to further adjust the requirements of the update.
	Triggering ML entity update (clause 6.5.2.2.2)

6.5.3	AI/ML inference capabilities management
6.5.3.1	Description
TBD.
6.5.3.2	Use cases
6.5.3.2.1	Identifying capabilities of ML entities
Network functions, especially network automation functions, may need to rely on capabilities of ML entities that are not internal to those network functions to accomplish the desired automation (inference). For example, as stated in TS 28.104 [2], “an MDA Function may optionally be deployed as one or more AI/ML inference function(s) in which the relevant models (ML entities) are used for inference per the corresponding MDA capability.” Similarly, owing to the differences in the kinds and complexity of intents that need to be fulfilled, an intent fulfillment solution may need to employ the capabilities of existing AI/ML inference functions to fulfill the intents. In any such case, management services are required to identify the capabilities of those existing ML entities that are employed by AI/ML inference functions.

Figure 6.5.3.2.1-1: Request and reporting on AI/ML inference capabilities
Figure 6.5.3.2.1-1 shows that the consumer may wish to obtain information about the available AI/ML inference capabilities to determine how to use them for the consumer's needs, e.g., for fulfillment of intent targets or other automation targets.
[bookmark: _Toc128685206][bookmark: _Toc129028465][bookmark: _Toc129029994][bookmark: _Toc129155862]6.5.3.2.2	Mapping of the capabilities of ML entities
Besides the discovery of the capabilities of ML entities, services are needed for mapping the ML entities and capabilities. In other words, instead of the consumer discovering specific capabilities, the consumer may want to know the ML entities that can be used to achieve a certain outcome. For this, the producer should be able to inform the consumer of the set of available ML entities that together achieve the consumer's automation needs.
In the case of intents for example, the complexity of the stated intents may significantly vary - from simple intents which may be fulfilled with a call to a single ML entity to complex intents that may require an intricate orchestration of multiple ML entities. For simple intents, it may be easy to map the execution logic to one or multiple ML entities. For complex intents, it may be required to employ multiple ML entities along with a corresponding functionality that manages their interrelated execution. The usage of the ML entities requires the awareness of their capabilities and interrelations.
Moreover, given the complexity of the required mapping to the multiple ML entities, services should be supported to provide the mapping of ML entities and capabilities.
6.5.3.3	Requirements for AI/ML inference capabilities management
Table 6.5.3.3-1
	Requirement label
	Description
	Related use case(s)

	REQ-ML_CAP-01
	The AI/ML inference MnS Producer shall have a capability allowing an authorized MnS consumer to request the capabilities of existing ML entities available within the AI/ML inference producer.
	Identifying capabilities of ML entities (clause 6.5.3.2.1)

	REQ- ML_CAP-02
	The AI/ML inference MnS Producer shall have a capability to report to an authorized MnS consumer the capabilities of an ML entity as a decision described as a triplet <object(s), parameters, metrics> with the entries respectively indicating: the object or object types for which the ML entity can undertake optimization or control; the configuration parameters on the stated object or object types, which the ML entity optimizes or controls to achieve the desired outcomes; and the network metrics which the ML entity optimizes through its actions.
	Identifying capabilities of ML entities (clause 6.5.3.2.1)

	REQ-ML_CAP-03
	The AI/ML inference MnS Producer shall have a capability to report to an authorized MnS consumer the capabilities of an ML entity as an analysis described as a tuple <object(s), characteristics> with the entries respectively indicating: the object or object types for which the ML entity can undertake analysis; and the network characteristics (related to the stated object or object types) for which the ML entity produces analysis
	Identifying capabilities of ML entities (clause 6.5.3.2.1)

	REQ-ML_CAP-04
	The AI/ML inference MnS Producer shall have a capability allowing an authorized MnS consumer to request a mapping of the consumer's inference targets to the capabilities of one or more ML entities.
	Mapping of the capabilities of ML entities (clause 6.5.3.2.2)

6.5.1	Use case category #1
[bookmark: _Toc134633997]6.5.1.1	Description
[bookmark: _Toc134633998]6.5.1.2	Use cases
[bookmark: _Toc134633999]6.5.1.2.1	use case #1
[bookmark: _Toc134634000]6.5.1.2.2	use case #2
[bookmark: _Toc134634004]6.5.1.3	Requirements for category #1
Table 6.5.1.3-1
	Requirement label
	Description
	Related use case(s)

	
	
	

	
	
	

	
	
	

	Next modified section

[bookmark: _Toc106015864][bookmark: _Toc106098502][bookmark: _Toc130201975]7	Information model definitions for AI/ML management
[bookmark: _Toc106098503][bookmark: _Toc130201976][bookmark: _Toc106015865]7.1	Imported and associated information entities
[bookmark: _Toc106015866][bookmark: _Toc106098504][bookmark: _Toc130201977][bookmark: MCCQCTEMPBM_00000144]7.1.1	Imported information entities and local labels
Table 7.1.1-1
	Label reference
	Local label

	[bookmark: MCCQCTEMPBM_00000034]3GPP TS 28.622 [12], IOC, Top
	Top

	3GPP TS 28.622 [12], IOC, SubNetwork
	SubNetwork

	3GPP TS 28.622 [12], IOC, ManagedElement
	ManagedElement

	3GPP TS 28.622 [12], IOC, ManagedFunction
	ManagedFunction

[bookmark: _Toc106015868][bookmark: _Toc106098506][bookmark: _Toc130201978]7.2	Common	information model definitions for AI/ML management
7.2.1	Class diagram
7.2.1.1	Relationships

Figure 7.2.1.1-1: Relations for common information models for AI/ML management
[bookmark: _Toc113634467]7.2.1.2	Inheritance
[image:]
Figure 7.2.1.2-1: Inheritance Hierarchy for common information models for AI/ML management
[bookmark: _Toc113634468][bookmark: _Hlk134605339]7.2.2	Class definitions
7.2.2.1	MLEntity
7.2.2.1.1	Definition
This IOC represents the ML entity. The algorithm of ML model or ML entity is not to be standardized.
The MLEntity may contain 3 types of contexts - TrainingContext which is the context under which the MLEntity has been trained, the ExpectedRunTimeContext which is the context where an MLEntity is expected to be applied or/and the RunTimeContext which is the context where the ML entity is being applied.
7.2.2.1.2	Attributes
Table 7.2.2.1.2 -1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLEntityId
	M
	T
	F
	F
	T

	inferenceType
	M
	T
	F
	F
	T

	mLEntityVersion
	M
	T
	F
	F
	T

	expectedRunTimeContext
	O
	T
	T
	F
	T

	trainingContext
	CM
	T
	F
	F
	T

	runTimeContext
	O
	T
	F
	F
	T

	supportedPerformanceIndicators
	O
	T
	F
	F
	T

7.2.2.1.3	Attribute constraints
Table 7.2.2.1.3-1
	Name
	Definition

	trainingContext Support Qualifier
	Condition: The trainingContext represents the status and conditions related to training and should be added when training is completed.

7.2.2.1.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
7.2.2.2	MLEntityRepository
7.2.2.2.1	Definition
The IOC MLEntityRepository represents the repository that contains the ML entities .
The MLEntityRepository MOI may contain one or more MLEntity(s).
7.2.2.2.2	Attributes
Table 7.2.2.2.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLRepositoryId
	M
	T
	F
	F
	F

7.2.2.2.3	Attribute constraints
None.
7.2.2.2.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.2.2.3	MLEntityCoordinationGroup
7.2.2.3.1	Definition
This IOC represents the group of ML entities, which can be trained and tested jointly and used to perform inference in a coordinated way.
One ML entity may have dependencies on one or more of the other ML entities of the same group.
One group is associated with at least two ML entities.
7.2.2.3.2	Attributes
Table 7.2.2.3.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	
	
	
	
	
	

	Attribute related to role
	
	
	
	
	

	memberMLEntityRefList
	M
	T
	F
	F
	T

7.2.2.3.3	Attribute constraints
None.
7.2.2.3.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3	Information model definitions for AI/ML operational phases
7.3.1	Information model definitions for ML Training
7.3.1.1	Class diagram
[bookmark: _Toc106015869][bookmark: _Toc106098507][bookmark: _Toc130201979]7.32.1.1.1	Relationships
This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant to ML model training phase. For the UML semantics, see TS 32.156 [13].

Figure 7.3.2.1.1.1-1: NRM fragment for ML training

Figure 7.3.1.1.1-2: NRM fragment for ML testing
[bookmark: _Toc106015870][bookmark: _Toc106098508][bookmark: _Toc130201980]7.3.1.12.2	Inheritance

Figure 7.3.1.12.2-1: Inheritance Hierarchy for ML training related NRMs

Figure 7.3.1.1.2-2: Inheritance Hierarchy for ML testing related NRMs
[bookmark: _Toc106015871][bookmark: _Toc106098509][bookmark: _Toc130201981]7.3.1.2	Class definitions
[bookmark: _Toc106015872][bookmark: _Toc106098510][bookmark: _Toc130201982][bookmark: MCCQCTEMPBM_00000035]7.3.1.2.1	MLTrainingFunction
[bookmark: _Toc106015873][bookmark: _Toc106098511][bookmark: _Toc130201983]7.3.1.2.1.1	Definition
[bookmark: MCCQCTEMPBM_00000036][bookmark: MCCQCTEMPBM_00000037]The IOC MLTrainingFunction represents the entity that undertakes ML training and is also the container of the MLTrainingRequest IOC(s).
[bookmark: MCCQCTEMPBM_00000038][bookmark: MCCQCTEMPBM_00000039]The entity represented by MLTrainingFunction MOI supports training of one or more MLEntity(s).
[bookmark: _Toc106015874][bookmark: _Toc106098512][bookmark: _Toc130201984][bookmark: MCCQCTEMPBM_00000146]7.3.1.2.1.2	Attributes
Table 7.3.1.2.1.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLEntityList
	M
	T
	F
	F
	F

	Attribute related to role
	
	
	
	
	

	mLEntityRepositoryRef
	CM
	T
	F
	F
	T

[bookmark: _Toc106015875][bookmark: MCCQCTEMPBM_00000141]
[bookmark: _Toc106098513][bookmark: _Toc130201985]7.3.1.2.1.3	Attribute constraints
None.
[bookmark: _Toc106015876][bookmark: _Toc106098514][bookmark: _Toc130201986]7.3.1.2.1.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc106015877][bookmark: _Toc106098515][bookmark: _Toc130201987][bookmark: MCCQCTEMPBM_00000041]7.3.1.2.2	MLTrainingRequest
[bookmark: _Toc106015878][bookmark: _Toc106098516][bookmark: _Toc130201988]7.3.1.2.2.1	Definition
[bookmark: MCCQCTEMPBM_00000042]The IOC MLTrainingRequest represents the ML model training request that is created by the ML training MnS consumer.
[bookmark: MCCQCTEMPBM_00000043][bookmark: MCCQCTEMPBM_00000044]The MLTrainingRequest MOI is contained under one MLTrainingFunction MOI.
The MLTrainingRequest MOI may represent the request for initial ML training or re-training. For ML re-training, the Each MLTrainingRequest is associated to at least one MLEntity for re-training a single ML entity, or associated to one MLEntityCoordinationGroup for re-training a group of coordinated ML entities.
[bookmark: MCCQCTEMPBM_00000047]The MLTrainingRequest may have a source to identify where it is coming from, and which may be used to prioritize the training resources for different sources. The sources may be for example the network functions, operator roles, or other functional differentiations.
[bookmark: MCCQCTEMPBM_00000048][bookmark: MCCQCTEMPBM_00000049]Each MLTrainingRequest may indicate the expectedRunTimeContext that describes the specific conditions for which the MLEntity should be trained.
In case the request is accepted, the ML training MnS producer decides when to start the ML training. Once the MnS producer decides to start the training based on the request, the ML training MnS producer instantiates one or more MLTrainingProcess MOI(s) that are responsible to perform the followings:
-	collects (more) data for training, if the training data are not available or the data are available but not sufficient for the training;
-	prepares and selects the required training data, with consideration of the consumer’s request provided candidate training data if any. The ML training MnS producer may examine the consumer's provided candidate training data and select none, some or all of them for training. In addition, the ML training MnS producer may select some other training data that are available in order to meet the consumer’s requirements for the MLentity training;
[bookmark: MCCQCTEMPBM_00000050]-	trains the MLEntity using the selected and prepared training data.
[bookmark: MCCQCTEMPBM_00000051][bookmark: MCCQCTEMPBM_00000052][bookmark: MCCQCTEMPBM_00000053]The MLTrainingRequest may have a requestStatus field to represent the status of the specific MLTrainingRequest:
-	The attribute values are "NOT_STARTED", "TRAINING_IN_PROGRESS", "SUSPENDED", "FINISHED", and "CANCELLED".
[bookmark: MCCQCTEMPBM_00000054]-	When value turns to "TRAINING_IN_PROGRESS", the ML training MnS producer instantiates one or more MLTrainingProcess MOI(s) representing the training process(es) being performed per the request and notifies the MLT MnS consumer(s) who subscribed to the notification.
When all of the training process associated to this request are completed, the value turns to "FINISHED".
[bookmark: _Toc106015879][bookmark: _Toc106098517][bookmark: _Toc130201989][bookmark: MCCQCTEMPBM_00000147]7.3.1.2.2.2	Attributes
Table 7.3.1.2.2.2-1
	[bookmark: _Toc106015880][bookmark: MCCQCTEMPBM_00000142][bookmark: MCCQCTEMPBM_00000148]Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	[bookmark: MCCQCTEMPBM_00000055]mLEntityId
	M
	T
	T
	F
	T

	inferenceType
	CM
	T
	F
	F
	T

	candidateTrainingDataSource
	O
	T
	T
	F
	T

	trainingDataQualityScore
	O
	T
	T
	F
	T

	trainingRequestSource
	M
	T
	T
	F
	T

	requestStatus
	M
	T
	F
	F
	T

	expectedRuntimeContext
	O
	T
	T
	F
	T

	performanceRequirements
	M
	T
	T
	F
	T

	cancelRequest
	O
	T
	T
	F
	T

	suspendRequest
	O
	T
	T
	F
	T

	[bookmark: _Hlk135932077]Attribute related to role
	
	
	
	
	

	[bookmark: MCCQCTEMPBM_00000161]mLEntityToTrainRef
	CM
	T
	F
	F
	T

	mLEntityCoordinationGroupToTrainRef
	CM
	T
	F
	F
	T

[bookmark: _Toc106098518][bookmark: _Toc130201990]7.3.1.2.2.3	Attribute constraints
Table 7.3.1.2.2.3-1
	Name
	Definition

	inferenceType Support Qualifier
	Condition: MLTrainingRequest MOI represents the request for initial ML training.

	mLEntityToTrainRef Support Qualifier
	Condition: MLTrainingRequest MOI represents the request for ML re-training.

	mLEntityCoordinationGroupToTrainRef Support Qualifier
	Condition: MLTrainingRequest MOI represents the request for joint training of a group of ML entities.

None.
[bookmark: _Toc106015881][bookmark: _Toc106098519][bookmark: _Toc130201991]7.3.1.2.2.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc106015882][bookmark: _Toc106098520][bookmark: _Toc130201992][bookmark: MCCQCTEMPBM_00000056]7.3.1.2.3	MLTrainingReport
[bookmark: _Toc106015883][bookmark: _Toc106098521][bookmark: _Toc130201993]7.3.1.2.3.1	Definition
[bookmark: MCCQCTEMPBM_00000057]The IOC MLTrainingReport represents the ML model training report that is provided by the training MnS producer.
[bookmark: MCCQCTEMPBM_00000058][bookmark: MCCQCTEMPBM_00000059]The MLTrainingReport MOI is contained under one MLTrainingFunction MOI.
[bookmark: _Toc106015884][bookmark: _Toc106098522][bookmark: _Toc130201994][bookmark: MCCQCTEMPBM_00000149]7.3.1.2.3.2	Attributes
Table 7.3.1.2.3.2-1
	[bookmark: _Toc106015885][bookmark: _Toc106098523][bookmark: _Toc130201995][bookmark: MCCQCTEMPBM_00000150]Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	[bookmark: MCCQCTEMPBM_00000060]mLEntityId
	M
	T
	F
	F
	T

	areConsumerTrainingDataUsed
	M
	T
	F
	F
	T

	usedConsumerTrainingData
	CM
	T
	F
	F
	T

	confidenceIndication
	O
	T
	F
	F
	T

	modelPerformanceTraining
	M
	T
	F
	F
	T

	modelPerformanceValidation
	O
	T
	F
	F
	T

	dataRatioTrainingAndValidation
	O
	T
	F
	F
	T

	areNewTrainingDataUsed
	M
	T
	F
	F
	T

	Attribute related to role
	
	
	
	
	

	trainingRequestRef
	CM
	T
	F
	F
	T

	trainingProcessRef
	M
	T
	F
	F
	T

	lastTrainingRef
	CM
	T
	F
	F
	T

	mLEnityGeneratedRef
	M
	T
	F
	F
	T

	mLEnityCoordinationGroupGeneratedRef
	CM
	T
	F
	F
	T

7.3.1.2.3.3	Attribute constraints
Table 7.3.1.2.3.3-1
	Name
	Definition

	[bookmark: MCCQCTEMPBM_00000061]usedConsumerTrainingData Support Qualifier
	Condition: The value of areConsumerTrainingDataUsed attribute is ALL or PARTIALLY.

	trainingRequestRef Support Qualifier
	Condition: The MLTrainingReport MOI represents the report for the ML model training that was requested by the MnS consumer (via MLTrainingRequest MOI).

	lastTrainingRef Support Qualifier
	Condition: The MLTrainingReport MOI represents the report for the ML model training that was not initial training (i.e. the model has been trained before).

	mLEnityCoordinationGroupGeneratedRef Support Qualifier
	Condition: The MLTrainingReport MOI represents the report for a joint training of a group of ML entities.

[bookmark: _Toc106015886][bookmark: _Toc106098524][bookmark: _Toc130201996]7.3.1.2.3.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.
[bookmark: _Toc106015887][bookmark: _Toc106098525][bookmark: _Toc130201997][bookmark: MCCQCTEMPBM_00000062]7.3.1.2.4	MLTrainingProcess
[bookmark: _Toc106015888][bookmark: _Toc106098526][bookmark: _Toc130201998]7.3.1.2.4.1	Definition
[bookmark: MCCQCTEMPBM_00000063]The IOC MLTrainingProcess represents the ML training process.
[bookmark: MCCQCTEMPBM_00000064][bookmark: MCCQCTEMPBM_00000065][bookmark: MCCQCTEMPBM_00000066][bookmark: MCCQCTEMPBM_00000067]One MLTrainingProcess MOI may be instantiated for each MLTrainingRequest MOI or a set of MLTrainingRequest MOIs.
[bookmark: MCCQCTEMPBM_00000068][bookmark: MCCQCTEMPBM_00000069][bookmark: MCCQCTEMPBM_00000070][bookmark: MCCQCTEMPBM_00000071][bookmark: MCCQCTEMPBM_00000072][bookmark: MCCQCTEMPBM_00000073][bookmark: MCCQCTEMPBM_00000074]For each MLEntity under training, a MLTrainingProcess is instantiated, i.e. an MLTrainingProcess is associated with exactly one MLEntity. The MLTrainingProcess may be associated with one or more MLTrainingRequest MOI.
[bookmark: MCCQCTEMPBM_00000075][bookmark: MCCQCTEMPBM_00000076][bookmark: MCCQCTEMPBM_00000077][bookmark: MCCQCTEMPBM_00000078][bookmark: MCCQCTEMPBM_00000079][bookmark: MCCQCTEMPBM_00000080][bookmark: MCCQCTEMPBM_00000081][bookmark: MCCQCTEMPBM_00000082][bookmark: MCCQCTEMPBM_00000083][bookmark: MCCQCTEMPBM_00000084]The MLTrainingProcess does not have to correspond to a specific MLTrainingRequest, i.e. a MLTrainingRequest does not have to be associated to a specific MLTrainingProcess. The MLTrainingProcess may be managed separately from the MLTrainingRequest MOIs, e.g. the MLTrainingRequest MOI may come from consumers which are network functions while the operator may wish to manage the MLTrainingProcess that is instantiated following the requests. Thus, the MLTrainingProcess may be associated to either one or more MLTrainingRequest MOI.
[bookmark: MCCQCTEMPBM_00000085][bookmark: MCCQCTEMPBM_00000086][bookmark: MCCQCTEMPBM_00000087][bookmark: MCCQCTEMPBM_00000088][bookmark: MCCQCTEMPBM_00000089][bookmark: MCCQCTEMPBM_00000090][bookmark: MCCQCTEMPBM_00000091][bookmark: MCCQCTEMPBM_00000092][bookmark: MCCQCTEMPBM_00000093][bookmark: MCCQCTEMPBM_00000094][bookmark: MCCQCTEMPBM_00000095][bookmark: MCCQCTEMPBM_00000096][bookmark: MCCQCTEMPBM_00000097]Each MLTrainingProcess instance needs to be managed differently from the related MLEntity, although the MLTrainingProcess may be associated to only one MLEntity. For example, the MLTrainingProcess may be triggered to start with a specific version of the MLEntity and multiple MLTrainingProcess instances may be triggered for different versions of the MLEntity. In either case the MLTrainingProcesse instances are still associated with the same MLEntity but are managed separately from the MLEntity.
[bookmark: MCCQCTEMPBM_00000098][bookmark: MCCQCTEMPBM_00000099][bookmark: MCCQCTEMPBM_00000100][bookmark: MCCQCTEMPBM_00000101][bookmark: MCCQCTEMPBM_00000102][bookmark: MCCQCTEMPBM_00000103][bookmark: MCCQCTEMPBM_00000104][bookmark: MCCQCTEMPBM_00000105]Each MLTrainingProcess has a priority that may be used to prioritize the execution of different MLTrainingProcesse instances. By default, the priority of the MLTrainingProcess may be related in a 1:1 manner with the priority of the MLTrainingRequest for which the MLTrainingProcess is instantiated.
[bookmark: MCCQCTEMPBM_00000106][bookmark: MCCQCTEMPBM_00000107]Each MLTrainingProcess may have one or more termination conditions used to define the points at which the MLTrainingProcess may terminate.
[bookmark: MCCQCTEMPBM_00000111]The "progressStatus" attribute represents the status of the ML model training and includes information the ML training MnS consumer can use to monitor the progress and results. The data type of this attribute is "ProcessMonitor" (see 3GPP TS 28.622 [12]). The following specializations are provided for this data type for the ML training process:
-	The "status" attribute values are "RUNNING", "CANCELLING", "SUSPENDED", "FINISHED", and "CANCELLED". The other values are not used.
[bookmark: MCCQCTEMPBM_00000112]-	The "timer" attribute is not used.
[bookmark: MCCQCTEMPBM_00000113]-	When the "status" is equal to "RUNNING" the "progressStateInfo" attribute shall indicate one of the following states: "COLLECTING_DATA", "PREPARING_TRAINING_DATA", "TRAINING".
[bookmark: MCCQCTEMPBM_00000114]-	No specifications are provided for the "resultStateInfo" attribute. Vendor specific information may be provided though.
[bookmark: MCCQCTEMPBM_00000115]When the training is completed with "status" equal to "FINISHED", the MLT MnS producer provides the training report, by creating an MLTrainingReport MOI, to the MLT MnS consumer.
[bookmark: _Toc106098527][bookmark: _Toc130201999][bookmark: MCCQCTEMPBM_00000151]7.3.1.2.4.2	Attributes
Table 7.3.1.2.4.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLTrainingProcessId
	M
	T
	T
	F
	T

	priority
	M
	T
	T
	F
	T

	terminationConditions
	M
	T
	T
	F
	T

	progressStatus
	M
	T
	F
	F
	T

	cancelProcess
	O
	T
	T
	F
	T

	suspendProcess
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	trainingRequestRef
	CM
	T
	F
	F
	T

	trainingReportRef
	M
	T
	F
	F
	T

[bookmark: _Toc106015889][bookmark: _Toc106098528][bookmark: _Toc130202000][bookmark: MCCQCTEMPBM_00000152]7.3.1.2.4.3	Attribute constraints
Table 7.3.1.2.4.3-1
	Name
	Definition

	[bookmark: MCCQCTEMPBM_00000117]trainingRequestRef Support Qualifier
	Condition: The MLTrainingReport MOI represents the report for the ML model training that was requested by the training MnS consumer (via MLTrainingRequest MOI).

[bookmark: _Toc106015890][bookmark: _Toc106098529][bookmark: _Toc130202001]7.3.1.2.4.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3.1.2.5	MLTestingFunction
7.3.1.2.5.1	Definition
The ML entity testing may be conducted by the ML training function, or by a separate function.
In case the ML entity testing is conducted by a function separate from the ML training function, the IOC MLTestingFunction is instantiated and represents the logical function that undertakes ML entity testing.
The entity represented by MLTestingFunction MOI supports testing of one or more MLEntity(s).
7.3.1.2.5.2	Attributes
Table 7.3.1.2.5.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLEntityIdList
	M
	T
	F
	F
	F

7.3.1.2.5.3	Attribute constraints
None.
7.3.1.2.5.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3.1.2.6	MLTestingRequest
7.3.1.2.6.1	Definition
The IOC MLTestingRequest represents the ML entity testing request that is created by the ML testing MnS consumer.
The MLTestingRequest MOI is contained under one MLTestingFunction MOI or MLTrainingFunction MOI which represents the logical function that conducts the ML entity testing. Each MLTestingRequest is associated to at least one MLEntity.
In case the request is accepted, the ML testing MnS producer decides when to start the ML testing. Once the MnS producer decides to start the testing based on the request, the ML testing MnS producer:
-	collects (more) data for testing, if the testing data are not available or the data are available but not sufficient for the testing;
-	prepares and selects the required testing data;
-	tests the MLEntity by performing inference using the selected testing data, and
-	reports the performance of the MLEntity when it performs on the selected testing data.
The MLTestingRequest may have a requestStatus field to represent the status of the request:
-	The attribute values are "NOT_STARTED", "TESTING_IN_PROGRESS", "SUSPENDED", "FINISHED", and "CANCELLED".

7.3.1.2.6.2	Attributes
Table 7.3.1.2.6.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	requestStatus
	M
	T
	F
	F
	T

	cancelRequest
	O
	T
	T
	F
	T

	suspendRequest
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	mLEntityToTestRef
	CM
	T
	F
	F
	T

	mLEntityCoordinationGroupToTestRef
	CM
	T
	F
	F
	T

7.3.1.2.6.3	Attribute constraints
Table 7.3.1.2.6.3-1
	Name
	Definition

	mLEntityToTestRef Support Qualifier
	Condition: The MLTestingRequest MOI represents the request for testing of a single ML entity.

	mLEntityCoordinationGroupToTestRef Support Qualifier
	Condition: The MLTestingRequest MOI represents the request for joint testing of a group of ML entities.

7.3.1.2.6.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3.1.2.7	MLTestingReport
7.3.1.2.7.1	Definition
The IOC MLTestingReport represents the ML testing report that is provided by the ML testing MnS producer.
The MLTestingReport MOI is contained under one MLTestingFunction MOI or MLTrainingFunction MOI which represents the logical function that conducts the ML entity testing.
For the joint testing of a group of ML entities, the ML testing report contains the testing results for every ML entity in the group.
7.3.1.2.7.2	Attributes
Table 7.3.1.2.7.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	modelPerformanceTesting
	M
	T
	F
	F
	T

	mLTestingResult
	M
	T
	F
	F
	T

	Attribute related to role
	
	
	
	
	

	testingRequestRef
	CM
	T
	F
	F
	T

7.3.1.2.7.3	Attribute constraints
Table 7.3.1.2.7.3-1
	Name
	Definition

	testingRequestRef Support Qualifier
	Condition: The MLTestingReport MOI represents the report for the ML model testing that was requested by the MnS consumer (via MLTestingRequest MOI).

7.3.1.2.7.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3.2	Information model definitions for ML emulation Phase
7.3.2.1	Class diagram
7.3.2.1.1	Relationships
7.3.2.1.2	Inheritance
7.3.2.2	Class definitions

7.3.3	Information model definitions for ML deployment phase
7.3.3.1	Class diagram
7.3.3.1.1	Relationships
7.3.3.1.2	Inheritance
7.3.3.2	Class definitions

7.3.4	Information model definitions for ML inference phase
7.3.4.1	Class diagram
7.3.4.1.1	Relationships
[bookmark: _Ref95386374][bookmark: _Ref95834303][bookmark: _Ref96948847][bookmark: _Ref98317612][bookmark: _Ref102464688][bookmark: _Hlk134609213][image: Generated by PlantUML]
Figure 7.3.4.1.1-1: NRM fragment for ML Inference Control
7.3.4.1.2	Inheritance
[image: Generated by PlantUML]
Figure 7.3.4.1.2-1: ML Inference Inheritance Relations

7.3.4.2	Class definitions
7.3.4.2.1 	MLUpdate
[bookmark: _Toc89153649][bookmark: _Toc89415408][bookmark: _Toc89415939][bookmark: _Toc89416355][bookmark: OLE_LINK12][bookmark: OLE_LINK13]7.3.4.2.1.1	Definition
This IOC represents the properties of MLUpdate.
MLUpdate is a managed function instantiable from the MLUpdate information object class and name-contained in either a subnetwork, a managedFunction or a managementFunction.
The MLUpdate shall be associated with one or more ML entities.
The MLUpdate shall contain one or more MLUpdateRequest(s)as well as one or more MLUpdateJob(s), where an MLUpdateJob is instantiated following or in response to one received MLUpdateRequest

[bookmark: _Toc89153650][bookmark: _Toc89415409][bookmark: _Toc89415940][bookmark: _Toc89416356]7.3.4.2.1.2	Attributes
The MLUpdate IOC includes attributes inherited from ManagedFunction IOC (defined in TS 28.622 [30]) and the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLUpdateId
	M
	T
	F
	F
	F

	Attributes related to Role
	
	
	
	
	

	mLEntityRef
	M
	T
	F
	F
	F

	mLUpdateJobRef
	M
	T
	F
	F
	F

	availMLCapabilityReportRef
	M
	T
	T
	F
	T

	mLUpdateReportRef
	M
	T
	T
	F
	T

7.3.4.2.1.3	Attribute constraints
None.
7.3.4.2.1.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3.4.2.2 	MLUpdateRequest
7.3.4.2.2.1	Definition
This IOC represents the properties of MLUpdateRequest.
For each request to update the ml capabilities, a consumer creates a new MLUpdateRequest on the MLUpdate, i.e., MLUpdateRequest shall be an information object class that is instantiated for each request for updating ML capabilities
-	Each MLUpdateRequest is associated to at least one MLEntity
-	Each MLUpdateRequest may have a RequestStatus field that is used to track the status of the specific MLUpdateRequest or the associated MLUpdateJob. The RequestStatus is written by the MLUpdate when there is a change in status of the update progress. The RequestStatus is an enumeration with the values: NOT_STARTED, IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED
-	Each MLUpdateRequest may contain specific reporting requirements including an MLUpdateReportingPeriod that define how the MLUpdate may report about the MLUpdateRequest or the associated MLUpdateJob. The reporting requirements contained in the MLUpdateRequest must be mapped to an existing MLUpdateJob instance
-	The MLUpdateRequest may specify a performanceGainThreshold which defines the minimum performance gain that shall be achieved with the capability update. This implies that the difference in the performances between the existing capabilities and the new capabilities should be at least performanceGainThreshold otherwise the new capabilities should not be applied. A threshold of performanceGainThreshold=0% implies that the capabilities should be applied even if there is no noticeable performance gain, it also implies that there should not be a performance degradation.
-	The MLUpdateRequest may indicates the maximum time that should be taken to complete the update

7.3.4.2.2.2	Attributes
The MLUpdateRequest IOC includes attributes inherited from Top IOC (defined in TS 28.622 [30]) and the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLUpdateRequestID
	M
	T
	F
	F
	F

	mLEntityId
	M
	T
	T
	F
	F

	performanceGainThreshold
	O
	T
	T
	T
	F

	newCapabilityVersionId
	O
	T
	T
	T
	F

	updateTimeDeadline
	O
	T
	T
	T
	F

	requestStatus
	M
	T
	T
	F
	T

	Attributes related to Role
	
	
	
	
	

	mLUpdateJobRef
	M
	T
	F
	F
	F

[bookmark: _Toc137816760]7.3.4.2.2.3	Attribute constraints
None.

[bookmark: _Toc137816761]7.3.4.2.2.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

7.3.4.2.3	 MLUpdateJob
7.3.4.2.3.1	Definition
This IOC represents the properties of MLUpdateJob.
For each MLUpdateRequest to update the ML capabilities, the MLUpdateJob is instantiated for the MLUpdateRequest or the MLUpdateRequest is associated with an ongoing MLUpdateJob if the MLUpdateJob is updating the same MLEntity(s) as stated in the MLUpdateRequest. I.e. the MLUpdateJob is associated with at least one MLUpdateRequest. Relatedly, the MLUpdateJob is associated with at least one MLEntity.
-	Each MLUpdateJob may have a status attribute used to indicate the level of success of the MLUpdateJob.
-	The MLUpdateJob has the capability of compiling and delivering reports and notifications about MLUpdate or its associated MLUpdateRequests, or the MLUpdateJob itself.
-	Each MLUpdateJob may have attributes specifying the ML capability update reporting characteristics (e.g. periodically, after completion, etc.).
7.3.4.2.3.2	Attributes
The MLUpdateJob IOC includes attributes inherited from Top IOC (defined in TS 28.622 [30]) and the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLUpdateJobID
	M
	T
	F
	F
	F

	mLEntityId
	O
	T
	F
	F
	F

	newCapabilityVersionId
	O
	T
	F
	T
	F

	progressStatus
	M
	T
	T
	F
	T

7.3.4.2.3.3	Attribute constraints
None.
7.3.4.2.3.4	Notifications
The common notifications defined in clause 7.6 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc106015891][bookmark: _Toc106098530][bookmark: _Toc130202002]7.4	Data type definitions
[bookmark: _Toc106015892][bookmark: _Toc106098531][bookmark: _Toc130202003][bookmark: MCCQCTEMPBM_00000118]7.4.1	ModelPerformance <<dataType>>
[bookmark: _Toc106015893][bookmark: _Toc106098532][bookmark: _Toc130202004]7.4.1.1	Definition
This data type specifies the performance of an ML entity when performing inference. The performance score is provided for each inference output.
[bookmark: _Toc106015894][bookmark: _Toc106098533][bookmark: _Toc130202005][bookmark: MCCQCTEMPBM_00000153]7.4.1.2	Attributes
Table 7.4.1.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	[bookmark: MCCQCTEMPBM_00000119]inferenceOutputName
	M
	T
	F
	F
	T

	performanceScore
	M
	T
	F
	F
	T

	performanceMetric
	M
	T
	F
	F
	T

	decisionConfidenceScore
	O
	T
	F
	F
	T

[bookmark: _Toc106015895][bookmark: _Toc106098534][bookmark: _Toc130202006]7.4.1.3	Attribute constraints
None.
[bookmark: _Toc106015896][bookmark: _Toc106098535][bookmark: _Toc130202007]7.4.1.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.
[bookmark: _Toc106015897][bookmark: _Toc106098536][bookmark: _Toc130202008][bookmark: MCCQCTEMPBM_00000120]7.4.2	MLEntity <<dataType>>Void
[bookmark: _Toc106015898][bookmark: _Toc106098537][bookmark: _Toc130202009]7.4.2.1	Definition
This data type represents the properties of an ML entity ML training may be requested for either an ML model or ML entity. The algorithm of ML model or ML entity is not to be standardized.
For each MLEntity under training, one or more MLTrainingProcess are instantiated.
The MLEntity may contain 3 types of contexts - TrainingContext which is the context under which the MLEntity has been trained, the ExpectedRunTimeContext which is the context where an MLEntity is expected to be applied or/and the RunTimeContext which is the context where the MLmodel or entity is being applied.
[bookmark: _Toc106015899][bookmark: _Toc106098538][bookmark: _Toc130202010][bookmark: MCCQCTEMPBM_00000154]7.4.2.2	Attributes
Table 7.4.2.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLEntityId
	M
	T
	F
	F
	T

	inferenceType
	M
	T
	F
	F
	T

	mLEntityVersion
	M
	T
	F
	F
	T

	expectedRunTimeContext
	O
	T
	T
	F
	T

	trainingContext
	CM
	T
	F
	F
	T

	runTimeContext
	O
	T
	F
	F
	T

[bookmark: _Toc106015900][bookmark: _Toc106098539][bookmark: _Toc130202011]7.4.3.3	Attribute constraints
[bookmark: MCCQCTEMPBM_00000155]Table 7.4.3.3-1
	Name
	Definition

	[bookmark: MCCQCTEMPBM_00000127]trainingContext Support Qualifier
	Condition: The trainingContext represents the status and conditions related to training and should be added when training is completed.

[bookmark: _Toc106015901][bookmark: _Toc106098540][bookmark: _Toc130202012]7.4.3.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.
[bookmark: _Toc106015902][bookmark: _Toc106098541][bookmark: _Toc130202013][bookmark: MCCQCTEMPBM_00000128]7.4.3	MLContext <<dataType>>
[bookmark: _Toc106015903][bookmark: _Toc106098542][bookmark: _Toc130202014]7.4.3.1	Definition
[bookmark: MCCQCTEMPBM_00000129][bookmark: MCCQCTEMPBM_00000130][bookmark: MCCQCTEMPBM_00000131][bookmark: MCCQCTEMPBM_00000132][bookmark: MCCQCTEMPBM_00000133]The MLContext represents the status and conditions related to the MLEntity. Specially it may be one of three types of context - the ExpectedRunTimeContext, the TrainingContext and the RunTimeContext.
[bookmark: _Toc106015904][bookmark: _Toc106098543][bookmark: _Toc130202015][bookmark: MCCQCTEMPBM_00000156]7.4.3.2	Attributes
Table 7.4.3.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	[bookmark: MCCQCTEMPBM_00000134]inferenceEntityRef
	CM
	T
	F
	F
	F

	dataProviderRef
	M
	T
	F
	F
	F

[bookmark: _Toc106015905][bookmark: _Toc106098544][bookmark: _Toc130202016]7.4.3.3	Attribute constraints
Table 7.4.3.3-1
	Name
	Definition

	inferenceEntityRef Support Qualifier
	Condition: The MLContext is used for ExpectedRunTimeContext or RunTimeContext.

[bookmark: _Toc106015906][bookmark: _Toc106098545][bookmark: _Toc130202017]7.4.3.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.

7.4.4	SupportedPerfIndicator <<dataType>>
7.4.4.1	Definition
This data type specifies a Performance indicator of an ML entity. The data type may be used to indicate which performance indicators shall be applicable to either of training, testing or inference.

7.4.4.2	Attributes
Table 7.4.4.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	performanceIndicatorName
	M
	T
	F
	F
	T

	isSupportedForTraining
	CM
	T
	F
	F
	T

	isSupportedForTesting
	CM
	T
	F
	F
	T

7.4.4.3	Attribute constraints
Table 7.4.4.3-1
	Name
	Definition

	isSupportedForTraining Support Qualifier
	Condition: if the performance indicator named performanceIndicatorName is applicable for training, the isSupportedforTraining must be stated

	isSupportedForTesting Support Qualifier
	Condition: if the performance indicator named performanceIndicatorName is applicable for testing, the isSupportedForTesting must be stated

7.4.4.4	Notifications
The notifications specified for the IOC using this <<dataType>> for its attribute(s), shall be applicable.
7.4.5 	 AvailMLCapabilityReport <<dataType>>
7.4.5.1	Definition
This dataType represents the properties of AvailMLCapabilityReport.
-	The MLUpdate may generate one or more AvailMLCapabilityReport, which indicate to the consumer that new ML capabilities are available and can be applied.
-	Each AvailMLCapabilityReport is associated to one or more MLEntity(s) and may indicate the one or more MLEntity(s) to which it applies.
-	The AvailMLCapabilityReport may include CapabilityVersions which indicate that there are multiple candidate sets of available ML capabilities with a different version number for each set.
-	The AvailMLCapabilityReport may include the expectedPerformanceGains, which provides information on the expected performance gain if/when the ML capabilities of the respective network function are updated with/to the specific set of newly available ML capabilities.
-	associated to one or more MLEntity(s) and may indicate the one or more MLEntity(s) to which it applies.
7.4.5.2	Attributes
The AvailMLCapabilityReport includes the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	availMLCapabilityReportID
	M
	T
	F
	F
	F

	mLEntityId
	M
	T
	F
	F
	F

	mLCapabilityVersionId
	M
	T
	F
	F
	F

	expectedPerformanceGains
	O
	T
	F
	F
	F

7.4.5.3	Attribute constraints
None.

7.4.5.4	Notifications
The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

7.4.6 	 MLUpdateReport <<dataType>>
7.4.6.1	Definition
This datatype represents the properties of MLUpdateReport.
-	The MLUpdate may generate one or more MLUpdateReport(s),
-	Each MLUpdateReport is associated to one or more MLEntity(s) and may indicate the one or more MLEntity(s) to which it applies.
-	The MLUpdateReport may indicate the achieved performance gain for the specific ML capability update, which is the gain in performance of the new capabilities compare with the original capabilities.
-	MLUpdate provides reports about MLEntity(s) or MLUpdateJob(s) that themselves are associated with MLEntity(s) for which update is requested and/or executed. Correspondingly, the both the MLUpdateRequest(s)and the MLUpdateJob(s) are conditionally mandatory in that at least one of them must be associated with an instance of MLUpdateReport.
7.4.6.2	Attributes
The MLUpdateReport includes the following attributes:
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mLUpdateReportID
	M
	T
	F
	F
	F

	mLUpdateJobID
	M
	T
	F
	F
	F

	achievedPerformanceGain
	O
	T
	F
	F
	T

	MLEntity(s)mLEntityRef
	M
	T
	F
	F
	F

7.4.6.3	Attribute constraints
None.
7.4.6.4	Notifications
The notifications specified for the IOC using this <<datatype>> for its attribute(s), shall be applicable.

[bookmark: _Toc106015907][bookmark: _Toc106098546][bookmark: _Toc130202018]7.5	Attribute definitions
[bookmark: _Toc106015908][bookmark: _Toc106098547][bookmark: _Toc130202019][bookmark: MCCQCTEMPBM_00000157]7.5.1	Attribute properties
Table 7.5.1-1
	Attribute Name
	Documentation and Allowed Values
	Properties

	mLEntityId
	It identifies the ML entity.
It is unique in each MnS producer.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	candidateTrainingDataSource
	It provides the address(es) of the candidate training data source provided by MnS consumer. The detailed training data format is vendor specific.

allowedValues: N/A.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	inferenceType
	It indicates the type of inference that the ML model supports.

allowedValues: the values of the MDA type (see 3GPP TS 28.104 [2]), Analytics ID(s) of NWDAF (see 3GPP TS 23.288 [3]), types of inference for RAN‑intelligence, and vendor's specific extensions.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	areConsumerTrainingDataUsed
	It indicates whether the consumer provided training data have been used for the ML model training.

allowedValues: ALL, PARTIALLY, NONE.
	type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	usedConsumerTrainingData
	It provides the address(es) where lists of the consumer-provided training data are located, which have been used for the ML model training.

allowedValues: N/A.

	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	trainingRequestRef
	It is the DN(s) of the related MLTrainingRequest MOI(s).

allowedValues: DN.
	type: DN (see TS 32.156 [13])
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	trainingProcessRef
	It is the DN(s) of the related MLTrainingProcess MOI(s) that produced the MLTrainingReport.

allowedValues: DN.
	type: DN (see TS 32.156 [13])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	trainingReportRef
	It is the DN of the MLTrainingReport MOI that represents the reports of the ML training.

allowedValues: DN.
	type: DN (see TS 32.156 [13])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	lastTrainingRef
	It is the DN of the MLTrainingReport MOI that represents the reports for the last training of the ML model.

allowedValues: DN.
	type: DN (see 3GPP TS 32.156 [13])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	confidenceIndication
	It indicates the confidence (in unit of percentage) that the ML model would perform for inference on the data with the same distribution as training data.

allowedValues: { 0..100 }.
	type: integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLEntityList
	It describes the list of MLEntity.
	type: MLEntity
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	trainingRequestSource
	It describes the entity that requested to instantiate the MLTrainingRequest MOI.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	MLTrainingRequest.requestStatus
	It describes the status of a particular ML training request.
allowedValues: NOT_STARTED, TRAINING_IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED.
	type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLTrainingProcessId
	It identifies the training process.
It is unique in each instantiated process in the MnS producer.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	priority
	It indicates the priority of the training process.
The priority may be used by the ML training to schedule the training processes. Lower value indicates a higher priority.

allowedValues: { 0..65535 }.
	type: integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: 0
isNullable: False

	terminationConditions
	It indicates the conditions to be considered by the MLtraining MnS producer to terminate a specific training process.
allowedValues: MODEL UPDATED_IN_INFERENCE_FUNCTION, INFERENCE FUNCTION_TERMINATED, INFERENCE FUNCTION_UPGRADED, INFERENCE_CONTEXT_CHANGED.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	progressStatus
	It indicates the status of the ML training process.

allowedValues: N/A.
	type: ProcessMonitor (see TS 28.622 [12])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLEntityVersion
	It indicates the version number of the ML entity.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	performanceRequirements
	It indicates the expected performance for a trained ML entity when performing on the training data.

allowedValues: N/A.
	type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	modelpPerformanceTraining
	It indicates the performance score of the ML entity when performing on the training data.

allowedValues: N/A.
	type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLTrainingProcess.progressStatus.progressStateInfo
	It provides the following specialization for the "progressStateInfo" attribute of the "ProcessMonitor" data type for the "MLTrainingProcess".

When the ML training is in progress, and the " mLTrainingProcess.progressStatus.status " is equal to "RUNNING", it provides the more detailed progress information.

allowedValues for " mLTrainingProcess.progressStatus.status " = "RUNNING":
-	“COLLECTING_DATA”
-	“PREPARING_TRAINING_DATA”
-	“TRAINING ” + DN of the MLEntity being trained

The allowed values for " mLTrainingProcess.progressStatus.status " = "CANCELLED" are vendor specific.
The allowed values for " mLTrainingProcess.progressStatus.status " = "CANCELLED" are vendor specific.
	Type: String
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	inferenceOutputName
	It indicates the name of an inference output of an ML entity.

allowedValues: the name of the MDA output IEs (see 3GPP TS 28.104 [2]), name of analytics output IEs of NWDAF (see TS 23.288 [3]), RAN-intelligence inference output IE name(s), and vendor's specific extensions.
	Type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	performanceMetric
	It indicates the performance metric used to evaluate the performance of an ML entity, e.g. "accuracy", "precision", "F1 score", etc.

allowedValues: N/A.
	Type: String
multiplicity: 1
isOrdered: N/A
isUnique: True
defaultValue: None
isNullable: False

	performanceScore
	It indicates the performance score (in unit of percentage) of an ML entity when performing inference on a specific data set (Note).

The performance metrics may be different for different kinds of ML models depending on the nature of the model. For instance, for numeric prediction, the metric may be accuracy; for classification, the metric may be a combination of precision and recall, like the "F1 score".

allowedValues: { 0..100 }.
	Type: Real
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	cancelRequest
	It indicates whether the ML training MnS consumer cancels the ML training request.
Setting this attribute to "TRUE" cancels the ML training request. Cancellation is possible when the requestStatus is the "NOT_STARTED", " TRAINING_IN_PROGRESS", and "SUSPENDED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	suspendRequest
	It indicates whether the ML training MnS consumer suspends the /ML training request.
Setting this attribute to "TRUE" suspends the ML training request. Suspension is possible when the requestStatus is not the "FINISHED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	cancelProcess
	It indicates whether the ML training MnS consumer cancels the ML training process.
Setting this attribute to "TRUE" cancels the ML training request. Cancellation is possible when the " mLTrainingProcess.progressStatus.status" is not the "FINISHED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	suspendProcess
	It indicates whether the ML training MnS consumer suspends the ML training process.
Setting this attribute to "TRUE" suspends the ML training request. Suspension is possible when the " mLTrainingProcess.progressStatus.status" is not the "FINISHED", "CANCELLING" or "CANCELLED" state. Setting the attribute to "FALSE" has no observable result.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

	inferenceEntityRef
	It describes the target entities that will use the ML entity for inference.
	Type: DN (see 3GPP TS 32.156 [13])
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	dataProviderRef
	It describes the entities that have provided or should provide data needed by the ML entity e.g. for training or inference
	Type: DN (see 3GPP TS 32.156 [13])
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	areNewTrainingDataUsed
	It indicates whether the other new training data have been used for the ML model training.

allowedValues: TRUE, FALSE.
	type: Boolean
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	trainingDataQualityScore
	It indicates numerical value that represents the dependability/quality of a given observation and measurement type. The lowest value indicates the lowest level of dependability of the data, i.e. that the data is not usable at all.

 allowedValues: { 0..100 }.
	Type: Real
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	decisionConfidenceScore
	It is the numerical value that represents the dependability/quality of a given decision generated by the AI/ML inference function. The lowest value indicates the lowest level of dependability of the decisions, i.e. that the data is not usable at all.

allowedValues: { 0..100 }.
	Type: Real
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	expectedRuntimeContext
	This describes the context where an MLEntity is expected to be applied or/and the RunTimeContext which is the context where the MLmodel or entity is being applied.

allowedValues: N/A
	Type: MLContext
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	trainingContext
	This specify the context under which the MLEntity has been trained.

allowedValues: N/A
	Type: MLContext
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	runTimeContext
	This specifies the context where the MLmodel or entity is being applied.

allowedValues: N/A
	Type: MLContext
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLEntityToTrainRef
	It identifies the DN of the MLEntity requested to be trained.

allowedValues: DN
	Type: DN
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	mLEnityGeneratedRef
	It identifies the DN of the MLEntity generated by the ML training.

allowedValues: DN
	Type: DN
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	mLEntityRepositoryRef
	It idenfifies the DN of the MLEntityRepository.

allowedValues: DN
	Type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLRepositoryId
	It indicates the unique ID of the ML repository.

allowedValues: N/A
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	modelPerformanceValidation
	It indicates the performance score of the ML entity when performing on the validation data.

allowedValues: N/A
	type: ModelPerformance
multiplicity: *
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	dataRatioTrainingAndValidation
	It indicates the ratio (in terms of quantity of data samples) of the training data and validation data used during the training and validation process. It is represented by the percentage of the validation data samples in the total training data set (including both training data samples and validation data samples). The value is an integer reflecting the rounded number of percent * 100.

allowedValues: { 0 .. 100 }.
	type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLEntityIdList
	It identifies a list of ML entities.

allowedValues: N/A.
	type: String
multiplicity: *
isOrdered: N/A
isUnique: True
defaultValue: None
isNullable: False

	MLTestingRequest.requestStatus
	It describes the status of a particular ML testing request.
allowedValues: NOT_STARTED, TESTING_IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED.
	type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLEntityToTestRef
	It identifies the DN of the MLEntity requested to be tested.

allowedValues: DN
	Type: DN (see TS 32.156 [13])
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	modelPerformanceTesting
	It indicates the performance score of the ML entity when performing on the testing data.

allowedValues: N/A.
	type: ModelPerformance
multiplicity: *
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLTestingResult
	It provides the address where the testing result (including the inference result for each testing data example) is provided.
The detailed testing result format is vendor specific.

allowedValues: N/A.

	type: String
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	testingRequestRef
	It identifies the DN of the MLTestingRequest MOI.

allowedValues: DN
	Type: DN (see TS 32.156 [13])
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: True

	supportedPerformanceIndicators
	It identifies a specific PerformanceIndicator of an ML entity.

allowedValues: N/A.
	type: SupportedPerfIndicator
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	performanceIndicatorName
	It indicates the identifier of the specific performance indicator.
allowedValues: N/A
	type: string
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	isSupportedForTraining
	It indicates whether the specific performance indicator is supported a performance metric of ML training for the ML entity Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	type: Boolean
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: FALSE
isNullable: False

	isSupportedForTesting
	It indicates whether the specific performance indicator is supported a performance metric of ML testing for the ML entity.
Default value is set to "FALSE".

allowedValues: TRUE, FALSE.
	type: Boolean
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: FALSE
isNullable: False

	mLUpdateId
	It identifies the function responsible for MLUpdate

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLUpdateRequestID
	It identifies a request for MLUpdate

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLUpdateJobID
	It identifies an update process instantiated by the function responsible for MLUpdate
It is unique in each instantiated process in the MnS producer.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLUpdateJobRef
	It is the DN of the mLUpdateJob MOI that represents the process of updating an ML entity.

allowedValues: DN.
	Type: DN (see TS 32.156 [13])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	availMLCapabilityReportRef
	It is the DN of the availMLCapabilityReport MOI that represents the reports of the available capabilities.

allowedValues: DN.
	Type: DN (see TS 32.156 [13])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	mLUpdateReportRef
	It is the DN of the mLUpdateReport MOI that represents the reports of the ML update outcomes.

allowedValues: DN.
	Type: DN (see TS 32.156 [13])
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	newCapabilityVersionId
	It indicates the specific version of AI/ML capabilities to be applied for the update. It is typically the one indicated by the MLCapabilityVersionID in a newCapabilityVersion
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mlCapabilityVersionId
	It indicates the version of ML capabilities that is available for the update.
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	performanceGainThreshold
	It defines the minimum performance gain as a percentage that shall be achieved with the capability update, i.e., the difference in the performances between the existing capabilities and the new capabilities should be at least performanceGainThreshold otherwise the new capabilities should not be applied.
Allowed value: float between 0.0 and 100.0
	type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	availMLCapabilityReportID
	It indicates the identifier of an report providing information on (a newly) available ML capabilities that can be applied for the update.

allowedValues: N/A.
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	availableMLCapability
	It indicates an available version of ML capabilities that can be used for update

Note: The nature of is MLCapability FFS, to be agreed in another pCR

	type: MLCapability
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	expectedPerformanceGains
	It indicates the expected performance gain if/when the AI/ML capabilities of the respective network function are updated with/to the specific set of newly available AI/ML capabilities.
	Type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	achievedPerformanceGain
	It indicates the performance gain that is achieved by updating the AI/ML entity or network function.
	Type: ModelPerformance
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	updateTimeDeadline
	It indicates the maximum as stated in the MLUpdate request that should be taken to complete the update
	Type: TimeWindow
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLEntityRef
	It indicates the list of references to MLEntity instances that can be updated.
	Type: DN
multiplicity: 1 .. *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	MLUpdateRequest.requestStatus
	It describes the status of a particular ML update request.
allowedValues: NOT_STARTED, IN_PROGRESS, CANCELLING, SUSPENDED, FINISHED, and CANCELLED.
	Type: Enum
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	memberMLEntityRefList
	It identifies the list of member ML entities within a level of an ML entity coordination group.

allowedValues: DN list
	Type: DN (see TS 32.156 [13])
multiplicity: 2..*
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

	mLEntityCoordinationGroupToTrainRef
	It identifies the DN of the MlEntityCoordinationGroup requested to be trained.

allowedValues: DN
	Type: DN (see TS 32.156 [13])
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLEnityCoordinationGroupGeneratedRef
	It identifies the DN of the MlEntityCoordinationGroup generated by the ML training.
allowedValues: DN
	Type: DN (see TS 32.156 [13])
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	mLEntityCoordinationGroupToTestRef
	It identifies the DN of the MlEntityCoordinationGroup requested to be tested.

allowedValues: DN
	Type: DN (see TS 32.156 [13])
multiplicity: 0..1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	NOTE:	When the performanceScore is to indicate the performance score for ML training, the data set is the training data set. When the performanceScore is to indicate the performance score for ML validation, the data set is the validation data set. When the performanceScore is to indicate the performance score for ML testing, the data set is the testing data set.

[bookmark: _Toc106015909][bookmark: _Toc106098548][bookmark: _Toc130202020][bookmark: MCCQCTEMPBM_00000158]7.5.2	Constraints
None.
[bookmark: _Toc106015910][bookmark: _Toc106098549][bookmark: _Toc130202021]7.6	Common notifications
[bookmark: _Toc106015911][bookmark: _Toc106098550][bookmark: _Toc130202022]7.6.1	Configuration notifications
[bookmark: MCCQCTEMPBM_00000136]This clause presents a list of notifications, defined in 3GPP TS 28.532 [11], that an MnS consumer may receive. The notification header attribute objectClass/objectInstance shall capture the DN of an instance of a class defined in the present document.
Table 7.6.1-1
	Name
	Qualifier
	Notes

	[bookmark: MCCQCTEMPBM_00000137]notifyMOICreation
	O
	--

	notifyMOIDeletion
	O
	--

	notifyMOIAttributeValueChanges
	O
	--

	notifyEvent
	O
	--

	Next modified section

[bookmark: _Toc106098554][bookmark: _Toc130202026]Annex A (informative):
PlantUML source code for NRM class diagrams
[bookmark: _Toc106015916][bookmark: _Toc106098555][bookmark: _Toc130202027]A.1	General
This annex contains the PlantUML source code for the NRM diagrams defined in clause 7.2 of the present document.
[bookmark: _Toc106015917][bookmark: _Toc106098556][bookmark: _Toc130202028]A.2	PlantUML code for Figure 7.23.1.1.1-1: NRM fragment for ML model training
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class ManagedEntity <<ProxyClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityCoordinationGroup <<InformationObjectClass>>
class MLTrainingFunction <<InformationObjectClass>>
class MLTrainingRequest <<InformationObjectClass>>
class MLTrainingReport <<InformationObjectClass>>
class MLTrainingProcess <<InformationObjectClass>>
class MLEntityRepository <<InformationObjectClass>>

ManagedEntity "1" *-- "*" MLTrainingFunction: <<names>>
MLTrainingFunction "*" -l-> "*" MLEntityRepository
MLTrainingFunction "1" *-- "*" MLTrainingProcess: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingRequest: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingReport: <<names>>

MLTrainingProcess "1" <-r-> "1" MLTrainingReport
MLTrainingReport "1" --> "1" MLTrainingReport
MLTrainingProcess "*" -l-> "*" MLTrainingRequest
MLTrainingRequest "*" --> "0..1" MLEntity
MLTrainingRequest "*" --> "0..1" MLEntityCoordinationGroup
MLTrainingReport "*" --> "1" MLEntity
MLTrainingReport "*" --> "1" MLEntityCoordinationGroup

(MLTrainingReport, MLEntity) ... (MLTrainingReport, MLEntityCoordinationGroup) : {xor}
(MLTrainingRequest, MLEntity) ... (MLTrainingRequest, MLEntityCoordinationGroup) : {xor}

note left of ManagedEntity
 This represents the following IOCs:
 SubNetwork or
 ManagedFunction or
 ManagedElement
 end note

@enduml
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class ManagedEntity <<ProxyClass>>
class MLEntity <<dataType>>
class MLTrainingFunction <<InformationObjectClass>>
class MLTrainingRequest <<InformationObjectClass>>
class MLTrainingReport <<InformationObjectClass>>
class MLTrainingProcess <<InformationObjectClass>>

ManagedEntity "1" *-- "*" MLTrainingFunction: <<names>>
MLTrainingFunction "1" -d-> "*" MLEntity
MLTrainingFunction "1" *-- "*" MLTrainingProcess: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingRequest: <<names>>
MLTrainingFunction "1" *-- "*" MLTrainingReport: <<names>>

MLTrainingProcess "1" <-r-> "1" MLTrainingReport
MLTrainingReport "1" --> "1" MLTrainingReport
MLTrainingRequest "*" -l-> "1" MLEntity
MLTrainingRequest "*" -r-> "*" MLTrainingProcess

note left of ManagedEntity
 Represents the following IOCs:
 Subnetwork or
 ManagedFunction or
 ManagedElement
 end note

@enduml

[bookmark: _Toc106015918][bookmark: _Toc106098557][bookmark: _Toc130202029]A.3	PlantUML code for Figure 7.23.1.1.2-1: Inheritance Hierarchy for ML model training related NRMs
@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class ManagedFunction <<InformationObjectClass>>
class MLTrainingFunction <<InformationObjectClass>>
class MLTrainingRequest <<InformationObjectClass>>
class MLTrainingProcess <<InformationObjectClass>>
class MLTrainingReport <<InformationObjectClass>>

ManagedFunction <|-- MLTrainingFunction
Top <|-- MLTrainingRequest
Top <|-- MLTrainingProcess
Top <|-- MLTrainingReport

@enduml
[bookmark: _Toc50630200][bookmark: _Toc66877266]
A.4	PlantUML code for Figure 7.2.1.1-1: Relationships for common information models for AI/ML management
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250
skinparam nodesep 60

class MLEntityRepository <<InformationObjectClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityCoordinationGroup <<InformationObjectClass>>

MLEntityRepository "1" *-- "*" MLEntity: <<names>>
MLEntityRepository "1" *-- "*" MLEntityCoordinationGroup: <<names>>

MLEntityCoordinationGroup "*" -r-> "2..*" MLEntity

@enduml

A.5	PlantUML code for Figure 7.2.1.2-1: Inheritance Hierarchy for common information models for AI/ML management
@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class MLEntityRepository <<InformationObjectClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityCoordinationGroup <<InformationObjectClass>>

Top <|-- MLEntityRepository
Top <|-- MLEntity
Top <|-- MLEntityCoordinationGroup

@enduml

A.6	PlantUML code for Figure 7.3.1.1.1-2: NRM fragment for ML entity testing
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class MLTestingEntity <<ProxyClass>>
class TestingFunction <<ProxyClass>>
class MLEntity <<InformationObjectClass>>
class MLEntityCoordinationGroup <<InformationObjectClass>>
class MLTestingFunction <<InformationObjectClass>>
class MLTestingRequest <<InformationObjectClass>>
class MLTestingReport <<InformationObjectClass>>

MLTestingEntity "1" *-- "*" MLTestingFunction: <<names>>

TestingFunction "1" *-- "*" MLTestingRequest : <<names>>
TestingFunction "1" *-- "*" MLTestingReport : <<names>>

MLTestingRequest "*" --> "0..1" MLEntity
MLTestingRequest "*" --> "0..1" MLEntityCoordinationGroup
MLTestingReport "*" -l-> "1" MLTestingRequest

(MLTestingRequest, MLEntity) ... (MLTestingRequest, MLEntityCoordinationGroup) : {xor}

note left of MLTestingEntity
 Represents the following IOCs:
 Subnetwork or
 ManagedFunction or
 ManagedElement
 end note

note left of TestingFunction
 Represents the following IOCs:
 MLTestingFunction or
 MLTrainingFunction
 end note

@enduml
A.7	PlantUML code for Figure 7.3.1.1.2-2: Inheritance Hierarchy for ML entity testing related NRMs
@startuml

skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class ManagedFunction <<InformationObjectClass>>
class MLTestingFunction <<InformationObjectClass>>
class MLTestingRequest <<InformationObjectClass>>
class MLTestingReport <<InformationObjectClass>>

ManagedFunction <|-- MLTestingFunction
Top <|-- MLTestingRequest
Top <|-- MLTestingReport

@enduml
A.8	PlantUML code for Figure 7.3.4.1.1-1: NRM fragment for ML Inference Control
[bookmark: _Hlk96013404]@startuml
scale max 350 height
skinparam ClassStereotypeFontStyle normal
skinparam shadowing false
skinparam monochrome true
skinparam defaultFontSize 12
hide members
hide circle
'skinparam maxMessageSize 250

class ManagedEntity <<ProxyClass>> #white
class MLUpdate <<InformationObjectClass>> #white
class MLUpdateJob <<InformationObjectClass>> #white
class MLEntity <<InformationObjectClass>> #white
class MLUpdateRequest <<InformationObjectClass>> #white

ManagedEntity "1" *-- "*" MLUpdate:<<names>>
MLUpdate "1" *-l- "*" MLUpdateRequest:<<names>>
MLUpdate "1" --> "*" "MLEntity"
MLUpdate "1" *-d-> "*" MLUpdateJob

MLUpdateRequest "1" -d-> "*" "MLEntity"
"MLEntity" "*" <-l- "1" MLUpdateJob
MLUpdateRequest "*" --> "1" MLUpdateJob

note left of ManagedEntity #white
 Represents the IOCs:
 SubNetwork or
 ManagedFunction or
 ManagementFunction
 end note

@enduml

A.9	PlantUML code for Figure 7.3.4.1.2-1: ML Inference Inheritance Relations
@startuml
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Top <<InformationObjectClass>>
class ManagedFunction <<InformationObjectClass>>
class MLUpdate << InformationObjectClass >>
class MLUpdateRequest << InformationObjectClass >>
class MLUpdateJob << InformationObjectClass >>

ManagedFunction <|-- MLUpdate
Top <|-- MLUpdateRequest
Top <|-- MLUpdateJob

@enduml

	End of modifications

image1.emf
Sequence of the flow

Training

phase

ML training

ML entity

loading

ML testing

Deployment

phase

Inference

phase

AI/ML

inference

ML emulation

Emulation

phase

Microsoft_Visio_Drawing.vsdx
Sequence of the flow
Training  phase
ML training
ML entity loading
ML testing
Deployment  phase
Inference  phase
AI/ML inference
ML emulation
Emulation
phase

image2.emf
ML Training Function: ML Training MnS producer

ML Training

(Internal business logic)

ML Training MnS

Consumer

ML Training MnS

Data

Data

Data

image3.png
ML training Function: MLT MnS producer

MLT training request

Response

Training result

MLT MnS consumer

image4.emf

ML e ntity 1

ML e ntity 2

Network Resources

ML Consumer

p

KPIs

Error

p

Microsoft_Word_97_-_2003_Document.doc

AIML Eentity1

AIML Eentity2

Network Resources

ML Consumer

p

KPIs

Error

p

[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]
image5.emf
AI/ML MnS

Consumer

AI/ML

Inference

Producer

Request AI/ML

Capabilities

Report on AI/ML

Capabilities

ML entity

Microsoft_Visio_Drawing1.vsdx
AI/ML MnS Consumer

AI/ML Inference Producer
Request AI/ML Capabilities
Report on AI/ML Capabilities

ML entity

image6.png
«InformationObjectclass
MLEntityRepository

J

“names» «names»

«nformationObjectClass» | * 2.4 [dnformationObjectclass;
MLEntityCoordinationGroup MLEntity

image7.png
\«InformationObjectClass»|
Top

[InformationObjectclass»|
MLEntityRepository

[«InformationObjectclass»|
MLEntity

«informationObjectclass»
MLEntityCoordinationGroup

image8.png
\einformationObjectClasss|
Top

informationObjectClasss,
MLEntity

informationObjectClasss,
MLRepository

image9.png
“This represents the following I0Cs. ﬁ
SubNetwork or «ProxyClass»
ManagedFunction or ManagedEntity
Managedelement
1
lenames»

\«InformationObjectClass» * _* [«nformationObjectClass»|

MLEntityRepository MLTrainingFunction
1 1
“hames» |names» <names»

InformationObjectClass»| &+ |«informationObjectClass»)| [«InformationObjectclass»|
MLTrainingRequest MLTrainingProcess MLTrainingReport

[«InformationObjectclass»|
MLEntity

«informationObjectclass»
MLEntityCoordinationGroup

image10.emf

Microsoft_Word_97_-_2003_Document1.doc
[image: image1.png]Represents the following I0Cs: 5[
SubNetwork or
ManagedFunction or
Managedelement

«ProxyClass»
ManagedEntity

MLTrainingFunction

names»

+ [«informationObjectClass| + 4 [«informationObjectclass»| 1 1 [«informationObjectclass»!
MLTrainingRequest MLTrainingProcess MLTrainingReport

«names»

«dataType:
MLEntity

image11.png
Represents the following I0Cs.
MLTestingFunction or

MLTrainingFunction

Represents the following I0Cs: 5[
«ProxyClass» Subnetwork or
TestingFunction ManagedFunction or
Managedelement

«names»

I

“names»

[«InformationObjectClass»| 1 + [«informationObjectclass»|
MLTestingRequest

MLTestingReport

0.1

[«InformationObjectclass»|
MLEntity

«informationObjectclass»
MLEntityCoordinationGroup

[«InformationObjectclass»|
MLTestingFunction

|

image12.emf

Microsoft_Word_97_-_2003_Document2.doc
[image: image1.png][«InformationObjectclass»|
ManagedFunction

\«InformationObjectClass»|
Top

|

[«InformationObjectclass»|
MLTrainingRequest

[«InformationObjectclass»|
MLTrainingProcess

[«InformationObjectclass»|
MLTrainingReport

(«InformationObjectclass»|
MLTrainingFunction

image13.png
\«InformationObjectClass»|
Top

[«InformationObjectclass»|
ManagedFunction

[«InformationObjectclass»|
MLTestingRequest

[«InformationObjectclass»|
MLTestingReport

[«InformationObjectclass»|
MLTestingFunction

image14.png
Represents the IOCs:
SubNetwork or «ProxyClass»
ManagedFunction or ManagedEntity
ManagementFunction ¢
1
«names»

* «names» 1

«InformationObjectClass»
MLUpdateRequest

«InformationObjectClass»
MLUpdate

«InformationObjectClass»| 1 *_|«InformationObjectClass»
MLUpdateJob MLEntity

image15.svg
 «ProxyClass» ManagedEntity «InformationObjectClass» MLUpdate «InformationObjectClass» MLUpdateJob «InformationObjectClass» MLEntity «InformationObjectClass» MLUpdateRequest Represents the IOCs: SubNetwork or ManagedFunction or ManagementFunction «names» 1 * «names» * 1 1 * 1 * 1 * 1 * * 1

image16.png
«InformationObjectClass»
Top

«InformationObjectClass»
ManagedFunction

«InformationObjectClass»
MLUpdateRequest

«InformationObjectClass»
MLUpdateJob

«InformationObjectClass»
MLUpdate

image17.svg
 «InformationObjectClass» Top «InformationObjectClass» ManagedFunction «InformationObjectClass» MLUpdate «InformationObjectClass» MLUpdateRequest «InformationObjectClass» MLUpdateJob

